34,759 research outputs found

    Computer Modeling of Personal Autonomy and Legal Equilibrium

    Full text link
    Empirical studies of personal autonomy as state and status of individual freedom, security, and capacity to control own life, particularly by independent legal reasoning, are need dependable models and methods of precise computation. Three simple models of personal autonomy are proposed. The linear model of personal autonomy displays a relation between freedom as an amount of agent's action and responsibility as an amount of legal reaction and shows legal equilibrium, the balance of rights and duties needed for sustainable development of any community. The model algorithm of judge personal autonomy shows that judicial decision making can be partly automated, like other human jobs. Model machine learning of autonomous lawyer robot under operating system constitution illustrates the idea of robot rights. Robots, i.e. material and virtual mechanisms serving the people, deserve some legal guarantees of their rights such as robot rights to exist, proper function and be protected by the law. Robots, actually, are protected as any human property by the wide scope of laws, starting with Article 17 of Universal Declaration of Human Rights, but the current level of human trust in autonomous devices and their role in contemporary society needs stronger legislation to guarantee the robot rights.Comment: 8 pages, 6 figures, presented at Computer Science On-line Conference 201

    Learning and Management for Internet-of-Things: Accounting for Adaptivity and Scalability

    Get PDF
    Internet-of-Things (IoT) envisions an intelligent infrastructure of networked smart devices offering task-specific monitoring and control services. The unique features of IoT include extreme heterogeneity, massive number of devices, and unpredictable dynamics partially due to human interaction. These call for foundational innovations in network design and management. Ideally, it should allow efficient adaptation to changing environments, and low-cost implementation scalable to massive number of devices, subject to stringent latency constraints. To this end, the overarching goal of this paper is to outline a unified framework for online learning and management policies in IoT through joint advances in communication, networking, learning, and optimization. From the network architecture vantage point, the unified framework leverages a promising fog architecture that enables smart devices to have proximity access to cloud functionalities at the network edge, along the cloud-to-things continuum. From the algorithmic perspective, key innovations target online approaches adaptive to different degrees of nonstationarity in IoT dynamics, and their scalable model-free implementation under limited feedback that motivates blind or bandit approaches. The proposed framework aspires to offer a stepping stone that leads to systematic designs and analysis of task-specific learning and management schemes for IoT, along with a host of new research directions to build on.Comment: Submitted on June 15 to Proceeding of IEEE Special Issue on Adaptive and Scalable Communication Network

    Ethical Challenges in Data-Driven Dialogue Systems

    Full text link
    The use of dialogue systems as a medium for human-machine interaction is an increasingly prevalent paradigm. A growing number of dialogue systems use conversation strategies that are learned from large datasets. There are well documented instances where interactions with these system have resulted in biased or even offensive conversations due to the data-driven training process. Here, we highlight potential ethical issues that arise in dialogue systems research, including: implicit biases in data-driven systems, the rise of adversarial examples, potential sources of privacy violations, safety concerns, special considerations for reinforcement learning systems, and reproducibility concerns. We also suggest areas stemming from these issues that deserve further investigation. Through this initial survey, we hope to spur research leading to robust, safe, and ethically sound dialogue systems.Comment: In Submission to the AAAI/ACM conference on Artificial Intelligence, Ethics, and Societ

    A Kernel Perspective for Regularizing Deep Neural Networks

    Get PDF
    We propose a new point of view for regularizing deep neural networks by using the norm of a reproducing kernel Hilbert space (RKHS). Even though this norm cannot be computed, it admits upper and lower approximations leading to various practical strategies. Specifically, this perspective (i) provides a common umbrella for many existing regularization principles, including spectral norm and gradient penalties, or adversarial training, (ii) leads to new effective regularization penalties, and (iii) suggests hybrid strategies combining lower and upper bounds to get better approximations of the RKHS norm. We experimentally show this approach to be effective when learning on small datasets, or to obtain adversarially robust models.Comment: ICM

    Performance-oriented Cloud Provisioning: Taxonomy and Survey

    Full text link
    Cloud computing is being viewed as the technology of today and the future. Through this paradigm, the customers gain access to shared computing resources located in remote data centers that are hosted by cloud providers (CP). This technology allows for provisioning of various resources such as virtual machines (VM), physical machines, processors, memory, network, storage and software as per the needs of customers. Application providers (AP), who are customers of the CP, deploy applications on the cloud infrastructure and then these applications are used by the end-users. To meet the fluctuating application workload demands, dynamic provisioning is essential and this article provides a detailed literature survey of dynamic provisioning within cloud systems with focus on application performance. The well-known types of provisioning and the associated problems are clearly and pictorially explained and the provisioning terminology is clarified. A very detailed and general cloud provisioning classification is presented, which views provisioning from different perspectives, aiding in understanding the process inside-out. Cloud dynamic provisioning is explained by considering resources, stakeholders, techniques, technologies, algorithms, problems, goals and more.Comment: 14 pages, 3 figures, 3 table
    • …
    corecore