567 research outputs found

    5G 3GPP-like Channel Models for Outdoor Urban Microcellular and Macrocellular Environments

    Get PDF
    For the development of new 5G systems to operate in bands up to 100 GHz, there is a need for accurate radio propagation models at these bands that currently are not addressed by existing channel models developed for bands below 6 GHz. This document presents a preliminary overview of 5G channel models for bands up to 100 GHz. These have been derived based on extensive measurement and ray tracing results across a multitude of frequencies from 6 GHz to 100 GHz, and this document describes an initial 3D channel model which includes: 1) typical deployment scenarios for urban microcells (UMi) and urban macrocells (UMa), and 2) a baseline model for incorporating path loss, shadow fading, line of sight probability, penetration and blockage models for the typical scenarios. Various processing methodologies such as clustering and antenna decoupling algorithms are also presented.Comment: To be published in 2016 IEEE 83rd Vehicular Technology Conference Spring (VTC 2016-Spring), Nanjing, China, May 201

    Study on 3GPP Rural Macrocell Path Loss Models for Millimeter Wave Wireless Communications

    Full text link
    Little research has been done to reliably model millimeter wave (mmWave) path loss in rural macrocell settings, yet, models have been hastily adopted without substantial empirical evidence. This paper studies past rural macrocell (RMa) path loss models and exposes concerns with the current 3rd Generation Partnership Project (3GPP) TR 38.900 (Release 14) RMa path loss models adopted from the International Telecommunications Union - Radiocommunications (ITU-R) Sector. This paper shows how the 3GPP RMa large-scale path loss models were derived for frequencies below 6 GHz, yet they are being asserted for use up to 30 GHz, even though there has not been sufficient work or published data to support their validity at frequencies above 6 GHz or in the mmWave bands. We present the background of the 3GPP RMa path loss models and their use of odd correction factors not suitable for rural scenarios, and show that the multi-frequency close-in free space reference distance (CI) path loss model is more accurate and reliable than current 3GPP and ITU-R RMa models. Using field data and simulations, we introduce a new close-in free space reference distance with height dependent path loss exponent model (CIH), that predicts rural macrocell path loss using an effective path loss exponent that is a function of base station antenna height. This work shows the CI and CIH models can be used from 500 MHz to 100 GHz for rural mmWave coverage and interference analysis, without any discontinuity at 6 GHz as exists in today's 3GPP and ITU-R RMa models.Comment: To be published in 2017 IEEE International Conference on Communications (ICC), Paris, France, May 201

    Investigation of Prediction Accuracy, Sensitivity, and Parameter Stability of Large-Scale Propagation Path Loss Models for 5G Wireless Communications

    Get PDF
    This paper compares three candidate large-scale propagation path loss models for use over the entire microwave and millimeter-wave (mmWave) radio spectrum: the alpha-beta-gamma (ABG) model, the close-in (CI) free space reference distance model, and the CI model with a frequency-weighted path loss exponent (CIF). Each of these models have been recently studied for use in standards bodies such as 3GPP, and for use in the design of fifth generation (5G) wireless systems in urban macrocell, urban microcell, and indoor office and shopping mall scenarios. Here we compare the accuracy and sensitivity of these models using measured data from 30 propagation measurement datasets from 2 GHz to 73 GHz over distances ranging from 4 m to 1238 m. A series of sensitivity analyses of the three models show that the physically-based two-parameter CI model and three-parameter CIF model offer computational simplicity, have very similar goodness of fit (i.e., the shadow fading standard deviation), exhibit more stable model parameter behavior across frequencies and distances, and yield smaller prediction error in sensitivity testing across distances and frequencies, when compared to the four-parameter ABG model. Results show the CI model with a 1 m close-in reference distance is suitable for outdoor environments, while the CIF model is more appropriate for indoor modeling. The CI and CIF models are easily implemented in existing 3GPP models by making a very subtle modification -- by replacing a floating non-physically based constant with a frequency-dependent constant that represents free space path loss in the first meter of propagation.Comment: Open access available at: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=743465

    Indoor wireless communications and applications

    Get PDF
    Chapter 3 addresses challenges in radio link and system design in indoor scenarios. Given the fact that most human activities take place in indoor environments, the need for supporting ubiquitous indoor data connectivity and location/tracking service becomes even more important than in the previous decades. Specific technical challenges addressed in this section are(i), modelling complex indoor radio channels for effective antenna deployment, (ii), potential of millimeter-wave (mm-wave) radios for supporting higher data rates, and (iii), feasible indoor localisation and tracking techniques, which are summarised in three dedicated sections of this chapter

    A Novel Millimeter-Wave Channel Simulator and Applications for 5G Wireless Communications

    Full text link
    This paper presents details and applications of a novel channel simulation software named NYUSIM, which can be used to generate realistic temporal and spatial channel responses to support realistic physical- and link-layer simulations and design for fifth-generation (5G) cellular communications. NYUSIM is built upon the statistical spatial channel model for broadband millimeter-wave (mmWave) wireless communication systems developed by researchers at New York University (NYU). The simulator is applicable for a wide range of carrier frequencies (500 MHz to 100 GHz), radio frequency (RF) bandwidths (0 to 800 MHz), antenna beamwidths (7 to 360 degrees for azimuth and 7 to 45 degrees for elevation), and operating scenarios (urban microcell, urban macrocell, and rural macrocell), and also incorporates multiple-input multiple-output (MIMO) antenna arrays at the transmitter and receiver. This paper also provides examples to demonstrate how to use NYUSIM for analyzing MIMO channel conditions and spectral efficiencies, which show that NYUSIM is an alternative and more realistic channel model compared to the 3rd Generation Partnership Project (3GPP) and other channel models for mmWave bands.Comment: 7 pages, 8 figures, in 2017 IEEE International Conference on Communications (ICC), Paris, May 201
    corecore