142,024 research outputs found

    Paraphrase Generation with Deep Reinforcement Learning

    Full text link
    Automatic generation of paraphrases from a given sentence is an important yet challenging task in natural language processing (NLP), and plays a key role in a number of applications such as question answering, search, and dialogue. In this paper, we present a deep reinforcement learning approach to paraphrase generation. Specifically, we propose a new framework for the task, which consists of a \textit{generator} and an \textit{evaluator}, both of which are learned from data. The generator, built as a sequence-to-sequence learning model, can produce paraphrases given a sentence. The evaluator, constructed as a deep matching model, can judge whether two sentences are paraphrases of each other. The generator is first trained by deep learning and then further fine-tuned by reinforcement learning in which the reward is given by the evaluator. For the learning of the evaluator, we propose two methods based on supervised learning and inverse reinforcement learning respectively, depending on the type of available training data. Empirical study shows that the learned evaluator can guide the generator to produce more accurate paraphrases. Experimental results demonstrate the proposed models (the generators) outperform the state-of-the-art methods in paraphrase generation in both automatic evaluation and human evaluation.Comment: EMNLP 201

    Controlling Risk of Web Question Answering

    Full text link
    Web question answering (QA) has become an indispensable component in modern search systems, which can significantly improve users' search experience by providing a direct answer to users' information need. This could be achieved by applying machine reading comprehension (MRC) models over the retrieved passages to extract answers with respect to the search query. With the development of deep learning techniques, state-of-the-art MRC performances have been achieved by recent deep methods. However, existing studies on MRC seldom address the predictive uncertainty issue, i.e., how likely the prediction of an MRC model is wrong, leading to uncontrollable risks in real-world Web QA applications. In this work, we first conduct an in-depth investigation over the risk of Web QA. We then introduce a novel risk control framework, which consists of a qualify model for uncertainty estimation using the probe idea, and a decision model for selectively output. For evaluation, we introduce risk-related metrics, rather than the traditional EM and F1 in MRC, for the evaluation of risk-aware Web QA. The empirical results over both the real-world Web QA dataset and the academic MRC benchmark collection demonstrate the effectiveness of our approach.Comment: 42nd International ACM SIGIR Conference on Research and Development in Information Retrieva
    • …
    corecore