477 research outputs found

    Dynamic Models Supporting Personalised Chronic Disease Management through Healthcare Sensors with Interactive Process Mining

    Full text link
    [EN] Rich streams of continuous data are available through Smart Sensors representing a unique opportunity to develop and analyse risk models in healthcare and extract knowledge from data. There is a niche for developing new algorithms, and visualisation and decision support tools to assist health professionals in chronic disease management incorporating data generated through smart sensors in a more precise and personalised manner. However, current understanding of risk models relies on static snapshots of health variables or measures, rather than ongoing and dynamic feedback loops of behaviour, considering changes and different states of patients and diseases. The rationale of this work is to introduce a new method for discovering dynamic risk models for chronic diseases, based on patients¿ dynamic behaviour provided by health sensors, using Process Mining techniques. Results show the viability of this method, three dynamic models have been discovered for the chronic diseases hypertension, obesity, and diabetes, based on the dynamic behaviour of metabolic risk factors associated. This information would support health professionals to translate a one-fits-all current approach to treatments and care, to a personalised medicine strategy, that fits treatments built on patients¿ unique behaviour thanks to dynamic risk modelling taking advantage of the amount data generated by smart sensors.This research was partially funded by the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement no. 727560.Valero Ramon, Z.; Fernández Llatas, C.; Valdivieso, B.; Traver Salcedo, V. (2020). Dynamic Models Supporting Personalised Chronic Disease Management through Healthcare Sensors with Interactive Process Mining. Sensors. 20(18):1-25. https://doi.org/10.3390/s20185330S1252018Chen, M., Mao, S., & Liu, Y. (2014). Big Data: A Survey. Mobile Networks and Applications, 19(2), 171-209. doi:10.1007/s11036-013-0489-0Brennan, P., Perola, M., van Ommen, G.-J., & Riboli, E. (2017). Chronic disease research in Europe and the need for integrated population cohorts. European Journal of Epidemiology, 32(9), 741-749. doi:10.1007/s10654-017-0315-2Raghupathi, W., & Raghupathi, V. (2018). An Empirical Study of Chronic Diseases in the United States: A Visual Analytics Approach to Public Health. International Journal of Environmental Research and Public Health, 15(3), 431. doi:10.3390/ijerph15030431Forouzanfar, M. H., Afshin, A., Alexander, L. T., Anderson, H. R., Bhutta, Z. A., Biryukov, S., … Charlson, F. J. (2016). Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet, 388(10053), 1659-1724. doi:10.1016/s0140-6736(16)31679-8Gómez, J., Oviedo, B., & Zhuma, E. (2016). Patient Monitoring System Based on Internet of Things. Procedia Computer Science, 83, 90-97. doi:10.1016/j.procs.2016.04.103Harvey, A., Brand, A., Holgate, S. T., Kristiansen, L. V., Lehrach, H., Palotie, A., & Prainsack, B. (2012). The future of technologies for personalised medicine. New Biotechnology, 29(6), 625-633. doi:10.1016/j.nbt.2012.03.009Larry Jameson, J., & Longo, D. L. (2015). Precision Medicine—Personalized, Problematic, and Promising. Obstetrical & Gynecological Survey, 70(10), 612-614. doi:10.1097/01.ogx.0000472121.21647.38Collins, F. S., & Varmus, H. (2015). A New Initiative on Precision Medicine. New England Journal of Medicine, 372(9), 793-795. doi:10.1056/nejmp1500523Glasgow, R. E., Kwan, B. M., & Matlock, D. D. (2018). Realizing the full potential of precision health: The need to include patient-reported health behavior, mental health, social determinants, and patient preferences data. Journal of Clinical and Translational Science, 2(3), 183-185. doi:10.1017/cts.2018.31Whittemore, A. S. (2010). Evaluating health risk models. Statistics in Medicine, 29(23), 2438-2452. doi:10.1002/sim.3991Reynolds, B. C., Roem, J. L., Ng, D. K. S., Matsuda-Abedini, M., Flynn, J. T., Furth, S. L., … Parekh, R. S. (2020). Association of Time-Varying Blood Pressure With Chronic Kidney Disease Progression in Children. JAMA Network Open, 3(2), e1921213. doi:10.1001/jamanetworkopen.2019.21213Campbell, H., Hotchkiss, R., Bradshaw, N., & Porteous, M. (1998). Integrated care pathways. BMJ, 316(7125), 133-137. doi:10.1136/bmj.316.7125.133Schienkiewitz, A., Mensink, G. B. M., & Scheidt-Nave, C. (2012). Comorbidity of overweight and obesity in a nationally representative sample of German adults aged 18-79 years. BMC Public Health, 12(1). doi:10.1186/1471-2458-12-658Must, A. (1999). The Disease Burden Associated With Overweight and Obesity. JAMA, 282(16), 1523. doi:10.1001/jama.282.16.1523Audureau, E., Pouchot, J., & Coste, J. (2016). Gender-Related Differential Effects of Obesity on Health-Related Quality of Life via Obesity-Related Comorbidities. Circulation: Cardiovascular Quality and Outcomes, 9(3), 246-256. doi:10.1161/circoutcomes.115.002127Everhart, J. E., Pettitt, D. J., Bennett, P. H., & Knowler, W. C. (1992). Duration of Obesity Increases the Incidence of NIDDM. Diabetes, 41(2), 235-240. doi:10.2337/diab.41.2.235Wannamethee, S. G. (2005). Overweight and obesity and weight change in middle aged men: impact on cardiovascular disease and diabetes. Journal of Epidemiology & Community Health, 59(2), 134-139. doi:10.1136/jech.2003.015651Ziegelstein, R. C. (2018). Perspectives in Primary Care: Knowing the Patient as a Person in the Precision Medicine Era. The Annals of Family Medicine, 16(1), 4-5. doi:10.1370/afm.2169Tricoli, A., Nasiri, N., & De, S. (2017). Wearable and Miniaturized Sensor Technologies for Personalized and Preventive Medicine. Advanced Functional Materials, 27(15), 1605271. doi:10.1002/adfm.201605271Saponara, S., Donati, M., Fanucci, L., & Celli, A. (2016). An Embedded Sensing and Communication Platform, and a Healthcare Model for Remote Monitoring of Chronic Diseases. Electronics, 5(4), 47. doi:10.3390/electronics5030047Alvarez, C., Rojas, E., Arias, M., Munoz-Gama, J., Sepúlveda, M., Herskovic, V., & Capurro, D. (2018). Discovering role interaction models in the Emergency Room using Process Mining. Journal of Biomedical Informatics, 78, 60-77. doi:10.1016/j.jbi.2017.12.015Fernández-Llatas, C., Benedi, J.-M., García-Gómez, J., & Traver, V. (2013). Process Mining for Individualized Behavior Modeling Using Wireless Tracking in Nursing Homes. Sensors, 13(11), 15434-15451. doi:10.3390/s131115434Shahar, Y. (1997). A framework for knowledge-based temporal abstraction. Artificial Intelligence, 90(1-2), 79-133. doi:10.1016/s0004-3702(96)00025-2Orphanou, K., Stassopoulou, A., & Keravnou, E. (2016). DBN-Extended: A Dynamic Bayesian Network Model Extended With Temporal Abstractions for Coronary Heart Disease Prognosis. IEEE Journal of Biomedical and Health Informatics, 20(3), 944-952. doi:10.1109/jbhi.2015.2420534Spruijt-Metz, D., Hekler, E., Saranummi, N., Intille, S., Korhonen, I., Nilsen, W., … Pavel, M. (2015). Building new computational models to support health behavior change and maintenance: new opportunities in behavioral research. Translational Behavioral Medicine, 5(3), 335-346. doi:10.1007/s13142-015-0324-1Rojas, E., Munoz-Gama, J., Sepúlveda, M., & Capurro, D. (2016). Process mining in healthcare: A literature review. Journal of Biomedical Informatics, 61, 224-236. doi:10.1016/j.jbi.2016.04.007Yoo, S., Cho, M., Kim, E., Kim, S., Sim, Y., Yoo, D., … Song, M. (2016). Assessment of hospital processes using a process mining technique: Outpatient process analysis at a tertiary hospital. International Journal of Medical Informatics, 88, 34-43. doi:10.1016/j.ijmedinf.2015.12.018Ibanez-Sanchez, G., Fernandez-Llatas, C., Martinez-Millana, A., Celda, A., Mandingorra, J., Aparici-Tortajada, L., … Traver, V. (2019). Toward Value-Based Healthcare through Interactive Process Mining in Emergency Rooms: The Stroke Case. International Journal of Environmental Research and Public Health, 16(10), 1783. doi:10.3390/ijerph16101783Chambers, D. A., Feero, W. G., & Khoury, M. J. (2016). Convergence of Implementation Science, Precision Medicine, and the Learning Health Care System. JAMA, 315(18), 1941. doi:10.1001/jama.2016.3867Cameranesi, M., Diamantini, C., Mircoli, A., Potena, D., & Storti, E. (2020). Extraction of User Daily Behavior From Home Sensors Through Process Discovery. IEEE Internet of Things Journal, 7(9), 8440-8450. doi:10.1109/jiot.2020.2990537Fernández-Llatas, C., Meneu, T., Traver, V., & Benedi, J.-M. (2013). Applying Evidence-Based Medicine in Telehealth: An Interactive Pattern Recognition Approximation. International Journal of Environmental Research and Public Health, 10(11), 5671-5682. doi:10.3390/ijerph10115671Conca, T., Saint-Pierre, C., Herskovic, V., Sepúlveda, M., Capurro, D., Prieto, F., & Fernandez-Llatas, C. (2018). Multidisciplinary Collaboration in the Treatment of Patients With Type 2 Diabetes in Primary Care: Analysis Using Process Mining. Journal of Medical Internet Research, 20(4), e127. doi:10.2196/jmir.8884Makaroff, L. E. (2017). The need for international consensus on prediabetes. The Lancet Diabetes & Endocrinology, 5(1), 5-7. doi:10.1016/s2213-8587(16)30328-xShiue, I., McMeekin, P., & Price, C. (2017). Retrospective observational study of emergency admission, readmission and the ‘weekend effect’. BMJ Open, 7(3), e012493. doi:10.1136/bmjopen-2016-01249

    User acceptance and adoption of smart homes: A decade long systematic literature review

    Get PDF
    This survey aims to provide a coherent and bibliometric overview of the theories and constructs employed in smart homes acceptance and adoption literature. To achieve the study aims, we con-ducted a systematic search for every article related to the SH concept, services and applications, user acceptance and adoption, and integrated IoT home appliances and devices, in 10 major library databases, namely, IEEE Digital Library, ACM Digital Library, Association for Information Systems (AIS), Elsevier, Emerald, Taylor and Francis, Wiley InterScience, Springer, Inderscience, and Hindawi. These databases contain literature focusing on smart home adoption using IoT tech-nology. 40 research articles of journal and peer-reviewed conferences were found relating to our research objective, presented and distributed chronologically, by publisher, country, theory and model, key construct, and with full bibliometrics for each article. Additionally, this survey includes a word cloud and a taxonomy of the entire factors used to understand users’ acceptance and adoption of smart homes in different contexts and applications. This study has many ad-vantages in covering the current research gap in the literature and also the researchers identify theoretical and practical research implications, research limitations, and recommendations for improving the acceptance and usage of smart homes literature

    Addressing data accuracy and information integrity in mHealth using ML

    Full text link
    The aim of the study was finding a way in which Machine Learning can be applied in mHealth Solutions to detect inaccurate data that can potentially harm patients. The result was an algorithm that classified accurate and inaccurate data

    Automatic Generation of Personalized Recommendations in eCoaching

    Get PDF
    Denne avhandlingen omhandler eCoaching for personlig livsstilsstøtte i sanntid ved bruk av informasjons- og kommunikasjonsteknologi. Utfordringen er å designe, utvikle og teknisk evaluere en prototyp av en intelligent eCoach som automatisk genererer personlige og evidensbaserte anbefalinger til en bedre livsstil. Den utviklede løsningen er fokusert på forbedring av fysisk aktivitet. Prototypen bruker bærbare medisinske aktivitetssensorer. De innsamlede data blir semantisk representert og kunstig intelligente algoritmer genererer automatisk meningsfulle, personlige og kontekstbaserte anbefalinger for mindre stillesittende tid. Oppgaven bruker den veletablerte designvitenskapelige forskningsmetodikken for å utvikle teoretiske grunnlag og praktiske implementeringer. Samlet sett fokuserer denne forskningen på teknologisk verifisering snarere enn klinisk evaluering.publishedVersio

    SPARC 2018 Internationalisation and collaboration : Salford postgraduate annual research conference book of abstracts

    Get PDF
    Welcome to the Book of Abstracts for the 2018 SPARC conference. This year we not only celebrate the work of our PGRs but also the launch of our Doctoral School, which makes this year’s conference extra special. Once again we have received a tremendous contribution from our postgraduate research community; with over 100 presenters, the conference truly showcases a vibrant PGR community at Salford. These abstracts provide a taster of the research strengths of their works, and provide delegates with a reference point for networking and initiating critical debate. With such wide-ranging topics being showcased, we encourage you to take up this great opportunity to engage with researchers working in different subject areas from your own. To meet global challenges, high impact research inevitably requires interdisciplinary collaboration. This is recognised by all major research funders. Therefore engaging with the work of others and forging collaborations across subject areas is an essential skill for the next generation of researchers

    An innovative approach for health care delivery to obese patients: from health needs identification to service integration

    Get PDF
    In Europe, more than half of the population is overweight or obese, and effort to design, validate, and implement innovative approaches is required to address social and health unmet needs of obese patients in terms of health promotion, disease prevention, and integration of services. The challenge is improving the collaboration between the different health and care stakeholders involved in the lives of obese patients, changing the socio-cultural attitude towards food intake and other behaviours leading to a negative impact on their health-related quality of life. The digital transformation of health and care can support changes in healthcare systems, healthy policy, and approaches to patient care and better implementation of the different health promotion and disease prevention strategies between all the stakeholders and support obese patients. Based on the previously experience adopted by Blueprint Partners with the Blueprint persona and user scenario in the context of models of care and prevention, health policies and analysis of risk factors affecting health and quality of life of obese subjects, the study aimed to simulate an integrated care pathway, through a multidisciplinary approach, developing and applying solutions and good clinical practices addressing the social and health unmet needs of obese patients. A pilot study assessed the quality of life (QoL), adherence to the Mediterranean diet, efficacy and interoperability of a digital health platform, Paginemediche. it. A qualitative approach has been adopted to identify and specify key digital solutions and high-impact user scenarios in Active and Healthy Ageing (AHA). To achieve a successful result, an iterative and collaborative approach has been followed to develop a user-centred perspective to the identification of solutions addressing health needs with different complexity along the entire life-course. Four initial key topic areas were chosen and used to identify different digital solutions that may meet the needs of the population segments defined by both age and the complexity of their health status. All data, derived from the industry representatives in the European Innovation Partnership on Active and Healthy Ageing (EIP on AHA), were collected via a survey to how digital solutions best met the needs of the various population segments represented by personas. Subsequently, innovative solutions were designed based on how a user from a target group interacts with technologies, developing "personas" belonging to specific "population segments" with different conditions and needs. Then, a high-impact user scenario, based on the correlation of personas' needs, good clinical practices and digital solutions available targeting needs which playing a role in the health and care delivery for the persona, has been developed. In the end, to evaluate how digital solutions and technologies can support obese patients during their weight loss or management of their related comorbidities in current service provision, ten obese patients were enrolled to evaluate a Digital Health platform, pagininemediche.it, developed. Matilde, the Blueprint persona developed, highlighted some of the main needs (social support, development of a health-friendly environment and educational program on healthy nutrition and physical activity) that may be addressed by integrating innovative solutions in the care of obese patients. Based on her profile, a high-impact user scenario diagram correlates health and social needs with digital solutions and can help key actors in the creation of a well-integrated care approach. Moreover, the evaluation of the digital platform, paginemediche.it, demonstrated how digital solutions can motivate and support obese patients in changing habits towards a healthy lifestyle, although no further statistical significance has been identified in the quality of life assessment because of the limited number of the patients, and short period of observation. Overweight or obese patients tend to be marginalized and the subject of a real social stigma. Digital solutions may be useful to overcome psychological factors that prevent obese patients from starting their journey for a lifestyle change. The suggested approach, which considers health needs, IT skills, socioeconomic context, interoperability, and integration gaps that may influence the adoption of innovative solutions tailored to improve health outcomes is person-centred, and identify what is important for obese patients. The implementation of a persona and user scenario approach may also be useful for the early involvement of end-users in solutions' design and adaptation, increasing adherence, and the effectiveness of digital solutions. Persona profiles, the user scenario, and the related digital solution also consider the potential benefits that can derive for both patients and health system in term of reduced emergency room admissions, waiting lists, and health related expenditures

    Radial Basis Function Neural Network in Identifying The Types of Mangoes

    Get PDF
    Mango (Mangifera Indica L) is part of a fruit plant species that have different color and texture characteristics to indicate its type. The identification of the types of mangoes uses the manual method through direct visual observation of mangoes to be classified. At the same time, the more subjective way humans work causes differences in their determination. Therefore in the use of information technology, it is possible to classify mangoes based on their texture using a computerized system. In its completion, the acquisition process is using the camera as an image processing instrument of the recorded images. To determine the pattern of mango data taken from several samples of texture features using Gabor filters from various types of mangoes and the value of the feature extraction results through artificial neural networks (ANN). Using the Radial Base Function method, which produces weight values, is then used as a process for classifying types of mangoes. The accuracy of the test results obtained from the use of extraction methods and existing learning methods is 100%
    • …
    corecore