5,368 research outputs found

    Behavior change interventions: the potential of ontologies for advancing science and practice

    Get PDF
    A central goal of behavioral medicine is the creation of evidence-based interventions for promoting behavior change. Scientific knowledge about behavior change could be more effectively accumulated using "ontologies." In information science, an ontology is a systematic method for articulating a "controlled vocabulary" of agreed-upon terms and their inter-relationships. It involves three core elements: (1) a controlled vocabulary specifying and defining existing classes; (2) specification of the inter-relationships between classes; and (3) codification in a computer-readable format to enable knowledge generation, organization, reuse, integration, and analysis. This paper introduces ontologies, provides a review of current efforts to create ontologies related to behavior change interventions and suggests future work. This paper was written by behavioral medicine and information science experts and was developed in partnership between the Society of Behavioral Medicine's Technology Special Interest Group (SIG) and the Theories and Techniques of Behavior Change Interventions SIG. In recent years significant progress has been made in the foundational work needed to develop ontologies of behavior change. Ontologies of behavior change could facilitate a transformation of behavioral science from a field in which data from different experiments are siloed into one in which data across experiments could be compared and/or integrated. This could facilitate new approaches to hypothesis generation and knowledge discovery in behavioral science

    Ontology-driven and weakly supervised rare disease identification from clinical notes

    Get PDF
    BACKGROUND: Computational text phenotyping is the practice of identifying patients with certain disorders and traits from clinical notes. Rare diseases are challenging to be identified due to few cases available for machine learning and the need for data annotation from domain experts. METHODS: We propose a method using ontologies and weak supervision, with recent pre-trained contextual representations from Bi-directional Transformers (e.g. BERT). The ontology-driven framework includes two steps: (i) Text-to-UMLS, extracting phenotypes by contextually linking mentions to concepts in Unified Medical Language System (UMLS), with a Named Entity Recognition and Linking (NER+L) tool, SemEHR, and weak supervision with customised rules and contextual mention representation; (ii) UMLS-to-ORDO, matching UMLS concepts to rare diseases in Orphanet Rare Disease Ontology (ORDO). The weakly supervised approach is proposed to learn a phenotype confirmation model to improve Text-to-UMLS linking, without annotated data from domain experts. We evaluated the approach on three clinical datasets, MIMIC-III discharge summaries, MIMIC-III radiology reports, and NHS Tayside brain imaging reports from two institutions in the US and the UK, with annotations. RESULTS: The improvements in the precision were pronounced (by over 30% to 50% absolute score for Text-to-UMLS linking), with almost no loss of recall compared to the existing NER+L tool, SemEHR. Results on radiology reports from MIMIC-III and NHS Tayside were consistent with the discharge summaries. The overall pipeline processing clinical notes can extract rare disease cases, mostly uncaptured in structured data (manually assigned ICD codes). CONCLUSION: The study provides empirical evidence for the task by applying a weakly supervised NLP pipeline on clinical notes. The proposed weak supervised deep learning approach requires no human annotation except for validation and testing, by leveraging ontologies, NER+L tools, and contextual representations. The study also demonstrates that Natural Language Processing (NLP) can complement traditional ICD-based approaches to better estimate rare diseases in clinical notes. We discuss the usefulness and limitations of the weak supervision approach and propose directions for future studies

    Rare Disease Identification from Clinical Notes with Ontologies and Weak Supervision

    Get PDF
    The identification of rare diseases from clinical notes with Natural Language Processing (NLP) is challenging due to the few cases available for machine learning and the need of data annotation from clinical experts. We propose a method using ontologies and weak supervision. The approach includes two steps: (i) Text-to-UMLS, linking text mentions to concepts in Unified Medical Language System (UMLS), with a named entity linking tool (e.g. SemEHR) and weak supervision based on customised rules and Bidirectional Encoder Representations from Transformers (BERT) based contextual representations, and (ii) UMLS-to-ORDO, matching UMLS concepts to rare diseases in Orphanet Rare Disease Ontology (ORDO). Using MIMIC-III US intensive care discharge summaries as a case study, we show that the Text-to-UMLS process can be greatly improved with weak supervision, without any annotated data from domain experts. Our analysis shows that the overall pipeline processing discharge summaries can surface rare disease cases, which are mostly uncaptured in manual ICD codes of the hospital admissions.Comment: 5 pages, 3 figures, accepted for IEEE EMBC 202

    BlogForever D2.6: Data Extraction Methodology

    Get PDF
    This report outlines an inquiry into the area of web data extraction, conducted within the context of blog preservation. The report reviews theoretical advances and practical developments for implementing data extraction. The inquiry is extended through an experiment that demonstrates the effectiveness and feasibility of implementing some of the suggested approaches. More specifically, the report discusses an approach based on unsupervised machine learning that employs the RSS feeds and HTML representations of blogs. It outlines the possibilities of extracting semantics available in blogs and demonstrates the benefits of exploiting available standards such as microformats and microdata. The report proceeds to propose a methodology for extracting and processing blog data to further inform the design and development of the BlogForever platform

    Mitotic stress is an integral part of the oncogene-induced senescence program that promotes multinucleation and cell cycle arrest

    Get PDF
    Oncogene-induced senescence (OIS) is a tumor suppression mechanism that blocks cell proliferation in response to oncogenic signaling. OIS is frequently accompanied by multinucleation; however, the origin of this is unknown. Here, we show that multinucleate OIS cells originate mostly from failed mitosis. Prior to senescence, mutant H-RasV12 activation in primary human fibroblasts compromised mitosis, concordant with abnormal expression of mitotic genes functionally linked to the observed mitotic spindle and chromatin defects. Simultaneously, H-RasV12 activation enhanced survival of cells with damaged mitoses, culminating in extended mitotic arrest and aberrant exit from mitosis via mitotic slippage. ERK-dependent transcriptional upregulation of Mcl1 was, at least in part, responsible for enhanced survival and slippage of cells with mitotic defects. Importantly, mitotic slippage and oncogene signaling cooperatively induced senescence and key senescence effectors p21 and p16. In summary, activated Ras coordinately triggers mitotic disruption and enhanced cell survival to promote formation of multinucleate senescent cells

    Linking genes to diseases: it's all in the data

    Get PDF
    Genome-wide association analyses on large patient cohorts are generating large sets of candidate disease genes. This is coupled with the availability of ever-increasing genomic databases and a rapidly expanding repository of biomedical literature. Computational approaches to disease-gene association attempt to harness these data sources to identify the most likely disease gene candidates for further empirical analysis by translational researchers, resulting in efficient identification of genes of diagnostic, prognostic and therapeutic value. Existing computational methods analyze gene structure and sequence, functional annotation of candidate genes, characteristics of known disease genes, gene regulatory networks, protein-protein interactions, data from animal models and disease phenotype. To date, a few studies have successfully applied computational analysis of clinical phenotype data for specific diseases and shown genetic associations. In the near future, computational strategies will be facilitated by improved integration of clinical and computational research, and by increased availability of clinical phenotype data in a format accessible to computational approaches

    Semantic web approach for italian graduates' surveys: the AlmaLaurea ontology proposal

    Get PDF
    Il crescente sviluppo e la promozione della trasparenza dei dati nell’ambito della pubblica amministrazione copre molteplici aspetti, fra cui l’educazione universitaria. Attualmente sono difatti numerosi i dataset rilasciati in formato Linked Open Data disponibili a livello nazionale ed internazionale. Fra le informazioni pubblicamente disponibili spiccano concetti riguardo l’occupazione e la numerosità dei laureati. Nonostante il progresso riscontrato, la mancanza di una metodologia standard per la descrizione di informazioni statistiche sui laureati rende difficoltoso un confronto di determinati fatti a partire da differenti sorgenti di dati. Sul piano nazionale, le indagini AlmaLaurea colmano il gap informativo dell’eterogeneità delle fonti proponendo statistiche centralizzate su profilo dei laureati e relativa condizione occupazionale, aggiornate annualmente. Scopo del progetto di tesi ù la realizzazione di un’ontologia di dominio che descriva diverse peculiarità dei laureati, promuovendo allo stesso tempo la definizione strutturata dei dati AlmaLaurea e la successiva pubblicazione nel contesto Linked Open Data. Il progetto, realizzato con l’ausilio delle tecnologie del Web Semantico, propone infine la creazione di un endpoint SPARQL e di una interfaccia web per l'interrogazione e la visualizzazione dei dati strutturati

    Doctor of Philosophy

    Get PDF
    dissertationSuccessful molecular diagnosis using an exome sequence hinges on accurate association of damaging variants to the patient's phenotype. Unfortunately, many clinical scenarios (e.g., single affected or small nuclear families) have little power to confidently identify damaging alleles using sequence data alone. Today's diagnostic tools are simply underpowered for accurate diagnosis in these situations, limiting successful diagnoses. In response, clinical genetics relies on candidate-gene and variant lists to limit the search space. Despite their practical utility, these lists suffer from inherent and significant limitations. The impact of false negatives on diagnostic accuracy is considerable because candidate-genes and variants lists are assembled ad hoc, choosing alleles based upon expert knowledge. Alleles not in the list are not considered-ending hope for novel discoveries. Rational alternatives to ad hoc assemblages of candidate lists are thus badly needed. In response, I created Phevor, the Phenotype Driven Variant Ontological Re-ranking tool. Phevor works by combining knowledge resident in biomedical ontologies, like the human phenotype and gene ontologies, with the outputs of variant-interpretation tools such as SIFT, GERP+, Annovar and VAAST. Phevor can then accurately to prioritize candidates identified by third-party variant-interpretation tools in light of knowledge found in the ontologies, effectively bypassing the need for candidate-gene and variant lists. Phevor differs from tools such as Phenomizer and Exomiser, as it does not postulate a set of fixed associations between genes and phenotypes. Rather, Phevor dynamically integrates knowledge resident in multiple bio-ontologies into the prioritization process. This enables Phevor to improve diagnostic accuracy for established diseases and previously undescribed or atypical phenotypes. Inserting known disease-alleles into otherwise healthy exomes benchmarked Phevor. Using the phenotype of the known disease, and the variant interpretation tool VAAST (Variant Annotation, Analysis and Search Tool), Phevor can rank 100% of the known alleles in the top 10 and 80% as the top candidate. Phevor is currently part of the pipeline used to diagnose cases as part the Utah Genome Project. Successful diagnoses of several phenotypes have proven Phevor to be a reliable diagnostic tool that can improve the analysis of any disease-gene search

    Framework for modelling tropical forest dynamics

    Get PDF

    A Learning Health System for Radiation Oncology

    Get PDF
    The proposed research aims to address the challenges faced by clinical data science researchers in radiation oncology accessing, integrating, and analyzing heterogeneous data from various sources. The research presents a scalable intelligent infrastructure, called the Health Information Gateway and Exchange (HINGE), which captures and structures data from multiple sources into a knowledge base with semantically interlinked entities. This infrastructure enables researchers to mine novel associations and gather relevant knowledge for personalized clinical outcomes. The dissertation discusses the design framework and implementation of HINGE, which abstracts structured data from treatment planning systems, treatment management systems, and electronic health records. It utilizes disease-specific smart templates for capturing clinical information in a discrete manner. HINGE performs data extraction, aggregation, and quality and outcome assessment functions automatically, connecting seamlessly with local IT/medical infrastructure. Furthermore, the research presents a knowledge graph-based approach to map radiotherapy data to an ontology-based data repository using FAIR (Findable, Accessible, Interoperable, Reusable) concepts. This approach ensures that the data is easily discoverable and accessible for clinical decision support systems. The dissertation explores the ETL (Extract, Transform, Load) process, data model frameworks, ontologies, and provides a real-world clinical use case for this data mapping. To improve the efficiency of retrieving information from large clinical datasets, a search engine based on ontology-based keyword searching and synonym-based term matching tool was developed. The hierarchical nature of ontologies is leveraged to retrieve patient records based on parent and children classes. Additionally, patient similarity analysis is conducted using vector embedding models (Word2Vec, Doc2Vec, GloVe, and FastText) to identify similar patients based on text corpus creation methods. Results from the analysis using these models are presented. The implementation of a learning health system for predicting radiation pneumonitis following stereotactic body radiotherapy is also discussed. 3D convolutional neural networks (CNNs) are utilized with radiographic and dosimetric datasets to predict the likelihood of radiation pneumonitis. DenseNet-121 and ResNet-50 models are employed for this study, along with integrated gradient techniques to identify salient regions within the input 3D image dataset. The predictive performance of the 3D CNN models is evaluated based on clinical outcomes. Overall, the proposed Learning Health System provides a comprehensive solution for capturing, integrating, and analyzing heterogeneous data in a knowledge base. It offers researchers the ability to extract valuable insights and associations from diverse sources, ultimately leading to improved clinical outcomes. This work can serve as a model for implementing LHS in other medical specialties, advancing personalized and data-driven medicine
    • 

    corecore