6,317 research outputs found

    Empirical Methodology for Crowdsourcing Ground Truth

    Full text link
    The process of gathering ground truth data through human annotation is a major bottleneck in the use of information extraction methods for populating the Semantic Web. Crowdsourcing-based approaches are gaining popularity in the attempt to solve the issues related to volume of data and lack of annotators. Typically these practices use inter-annotator agreement as a measure of quality. However, in many domains, such as event detection, there is ambiguity in the data, as well as a multitude of perspectives of the information examples. We present an empirically derived methodology for efficiently gathering of ground truth data in a diverse set of use cases covering a variety of domains and annotation tasks. Central to our approach is the use of CrowdTruth metrics that capture inter-annotator disagreement. We show that measuring disagreement is essential for acquiring a high quality ground truth. We achieve this by comparing the quality of the data aggregated with CrowdTruth metrics with majority vote, over a set of diverse crowdsourcing tasks: Medical Relation Extraction, Twitter Event Identification, News Event Extraction and Sound Interpretation. We also show that an increased number of crowd workers leads to growth and stabilization in the quality of annotations, going against the usual practice of employing a small number of annotators.Comment: in publication at the Semantic Web Journa

    SAVOIAS: A Diverse, Multi-Category Visual Complexity Dataset

    Full text link
    Visual complexity identifies the level of intricacy and details in an image or the level of difficulty to describe the image. It is an important concept in a variety of areas such as cognitive psychology, computer vision and visualization, and advertisement. Yet, efforts to create large, downloadable image datasets with diverse content and unbiased groundtruthing are lacking. In this work, we introduce Savoias, a visual complexity dataset that compromises of more than 1,400 images from seven image categories relevant to the above research areas, namely Scenes, Advertisements, Visualization and infographics, Objects, Interior design, Art, and Suprematism. The images in each category portray diverse characteristics including various low-level and high-level features, objects, backgrounds, textures and patterns, text, and graphics. The ground truth for Savoias is obtained by crowdsourcing more than 37,000 pairwise comparisons of images using the forced-choice methodology and with more than 1,600 contributors. The resulting relative scores are then converted to absolute visual complexity scores using the Bradley-Terry method and matrix completion. When applying five state-of-the-art algorithms to analyze the visual complexity of the images in the Savoias dataset, we found that the scores obtained from these baseline tools only correlate well with crowdsourced labels for abstract patterns in the Suprematism category (Pearson correlation r=0.84). For the other categories, in particular, the objects and advertisement categories, low correlation coefficients were revealed (r=0.3 and 0.56, respectively). These findings suggest that (1) state-of-the-art approaches are mostly insufficient and (2) Savoias enables category-specific method development, which is likely to improve the impact of visual complexity analysis on specific application areas, including computer vision.Comment: 10 pages, 4 figures, 4 table

    Learning From Noisy Singly-labeled Data

    Get PDF
    Supervised learning depends on annotated examples, which are taken to be the \emph{ground truth}. But these labels often come from noisy crowdsourcing platforms, like Amazon Mechanical Turk. Practitioners typically collect multiple labels per example and aggregate the results to mitigate noise (the classic crowdsourcing problem). Given a fixed annotation budget and unlimited unlabeled data, redundant annotation comes at the expense of fewer labeled examples. This raises two fundamental questions: (1) How can we best learn from noisy workers? (2) How should we allocate our labeling budget to maximize the performance of a classifier? We propose a new algorithm for jointly modeling labels and worker quality from noisy crowd-sourced data. The alternating minimization proceeds in rounds, estimating worker quality from disagreement with the current model and then updating the model by optimizing a loss function that accounts for the current estimate of worker quality. Unlike previous approaches, even with only one annotation per example, our algorithm can estimate worker quality. We establish a generalization error bound for models learned with our algorithm and establish theoretically that it's better to label many examples once (vs less multiply) when worker quality is above a threshold. Experiments conducted on both ImageNet (with simulated noisy workers) and MS-COCO (using the real crowdsourced labels) confirm our algorithm's benefits.Comment: 18 pages, 3 figure
    • …
    corecore