611 research outputs found

    Study the Effects of Multilevel Selection in Multi-Population Cultural Algorithm

    Get PDF
    This is a study on the effects of multilevel selection (MLS) theory in optimizing numerical functions. Based on this theory, a new architecture for Multi-Population Cultural Algorithm is proposed which incorporates a new multilevel selection framework (ML-MPCA). The approach used in this paper is based on biological group selection theory that states natural selection acts collectively on all the members of a given group. The effects of cooperation are studied using n-player prisoner’s dilemma. In this game, N individuals are randomly divided into m groups and individuals independently choose to be either cooperator or defector. A two-level selection process is introduced namely within group selection and between group selection. Individuals interact with the other members of the group in an evolutionary game that determines their fitness. The principal idea behind incorporating this multilevel selection model is to avoid premature convergence and to escape from local optima and for better exploration of the search space. We test our algorithm using the CEC 2015 expensive benchmark functions to evaluate its performance. These problems are a set of 15 functions which includes varied function categories. We show that our proposed algorithm improves solution accuracy and consistency. For 10 dimensional problems, the proposed method has 8 out 15 better results and for 30-dimensional problems we have 11 out of 15 better results when compared to the existing algorithms. The proposed model can be extended to more than two levels of selection and can also include migration

    Evolutionary computation based on nanocomposite training: application to data classification

    Get PDF
    Research into novel materials and computation frameworks by-passing the limitations of the current paradigm, has been identified as crucial for the development of the next generation of computing technology. Within this context, evolution in materio (EiM) proposes an approach where evolutionary algorithms (EAs) are used to explore and exploit the properties of un-configured materials until they reach a state where they can perform a computational task. Following an EiM approach, this thesis demonstrates the ability of EAs to evolve dynamic nanocomposites into data classifiers. Material-based computation is treated as an optimisation problem with a hybrid search space consisting of configuration voltages creating an electric field applied to the material, and the infinite space of possible states the material can reach in response to this field. In a first set of investigations, two different algorithms, differential evolution (DE) and particle swarm optimisation (PSO), are used to evolve single-walled carbon nanotube (SWCNT) / liquid crystal (LC) composites capable of classifying artificial, two-dimensional, binary linear and non-linear separable and merged datasets at low SWCNT concentrations. The difference in search behaviour between the two algorithms is found to affect differently the composite’ state during training, which in turn affects the accuracy, consistency and generalisation of evolved solutions. SWCNT/LC processors are also able to scale to complex, real-life classification problems. Crucially, results suggest that problem complexity influences the properties of the processors. For more complex problems, networks of SWCNT structures tend to form within the composite, creating stable devices requiring no configuration voltages to classify data, and with computational capabilities that can be recovered more than several hours after training. A method of programming the dynamic composites is demonstrated, based on the reapplication of sequences of configuration voltages which have produced good quality SWCNT/LC classifiers. A second set of investigations aims at exploiting the properties presented by the dynamic nanocomposites, whilst also providing a means for evolved device encapsulation, making their use easier in out-of-the lab applications. Novel composites based on SWCNTs dispersed in one-part UV-cure epoxies are introduced. Results obtained with these composites support their choice for use in subsequent EiM research. A final discussion is concerned with evolving an electro-biological processor and a memristive processor. Overall, the work reported in the thesis suggests that dynamic nanocomposites present a number of unexpected, potentially attractive properties not found in other materials investigated in the context of EiM

    The MOEADr Package – A Component-Based Framework for Multiobjective Evolutionary Algorithms Based on Decomposition

    Get PDF
    Multiobjective Evolutionary Algorithms based on Decomposition (MOEA/D) represent a widely used class of population-based metaheuristics for the solution of multicriteria optimization problems. We introduce the MOEADr package, which offers many of these variants as instantiations of a component-oriented framework. This approach contributes for easier reproducibility of existing MOEA/D variants from the literature, as well as for faster development and testing of new composite algorithms. The package offers an standardized, modular implementation of MOEA/D based on this framework, which was designed aiming at providing researchers and practitioners with a standard way to discuss and express MOEA/D variants. In this paper we introduce the design principles behind the MOEADr package, as well as its current components. Three case studies are provided to illustrate the main aspects of the package

    A review of population-based metaheuristics for large-scale black-box global optimization: Part B

    Get PDF
    This paper is the second part of a two-part survey series on large-scale global optimization. The first part covered two major algorithmic approaches to large-scale optimization, namely decomposition methods and hybridization methods such as memetic algorithms and local search. In this part we focus on sampling and variation operators, approximation and surrogate modeling, initialization methods, and parallelization. We also cover a range of problem areas in relation to large-scale global optimization, such as multi-objective optimization, constraint handling, overlapping components, the component imbalance issue, and benchmarks, and applications. The paper also includes a discussion on pitfalls and challenges of current research and identifies several potential areas of future research

    Towards a more efficient use of computational budget in large-scale black-box optimization

    Get PDF
    Evolutionary algorithms are general purpose optimizers that have been shown effective in solving a variety of challenging optimization problems. In contrast to mathematical programming models, evolutionary algorithms do not require derivative information and are still effective when the algebraic formula of the given problem is unavailable. Nevertheless, the rapid advances in science and technology have witnessed the emergence of more complex optimization problems than ever, which pose significant challenges to traditional optimization methods. The dimensionality of the search space of an optimization problem when the available computational budget is limited is one of the main contributors to its difficulty and complexity. This so-called curse of dimensionality can significantly affect the efficiency and effectiveness of optimization methods including evolutionary algorithms. This research aims to study two topics related to a more efficient use of computational budget in evolutionary algorithms when solving large-scale black-box optimization problems. More specifically, we study the role of population initializers in saving the computational resource, and computational budget allocation in cooperative coevolutionary algorithms. Consequently, this dissertation consists of two major parts, each of which relates to one of these research directions. In the first part, we review several population initialization techniques that have been used in evolutionary algorithms. Then, we categorize them from different perspectives. The contribution of each category to improving evolutionary algorithms in solving large-scale problems is measured. We also study the mutual effect of population size and initialization technique on the performance of evolutionary techniques when dealing with large-scale problems. Finally, assuming uniformity of initial population as a key contributor in saving a significant part of the computational budget, we investigate whether achieving a high-level of uniformity in high-dimensional spaces is feasible given the practical restriction in computational resources. In the second part of the thesis, we study the large-scale imbalanced problems. In many real world applications, a large problem may consist of subproblems with different degrees of difficulty and importance. In addition, the solution to each subproblem may contribute differently to the overall objective value of the final solution. When the computational budget is restricted, which is the case in many practical problems, investing the same portion of resources in optimizing each of these imbalanced subproblems is not the most efficient strategy. Therefore, we examine several ways to learn the contribution of each subproblem, and then, dynamically allocate the limited computational resources in solving each of them according to its contribution to the overall objective value of the final solution. To demonstrate the effectiveness of the proposed framework, we design a new set of 40 large-scale imbalanced problems and study the performance of some possible instances of the framework
    • …
    corecore