195 research outputs found

    Empirical evaluation of resampling procedures for optimising SVM hyperparameters

    Get PDF
    Tuning the regularisation and kernel hyperparameters is a vital step in optimising the generalisation performance of kernel methods, such as the support vector machine (SVM). This is most often performed by minimising a resampling/cross-validation based model selection criterion, however there seems little practical guidance on the most suitable form of resampling. This paper presents the results of an extensive empirical evaluation of resampling procedures for SVM hyperparameter selection, designed to address this gap in the machine learning literature. Wetested 15 different resampling procedures on 121 binary classification data sets in order to select the best SVM hyperparameters. Weused three very different statistical procedures to analyse the results: the standard multi-classifier/multidata set procedure proposed by Demˇsar, the confidence intervals on the excess loss of each procedure in relation to 5-fold cross validation, and the Bayes factor analysis proposed by Barber. We conclude that a 2-fold procedure is appropriate to select the hyperparameters of an SVM for data sets for 1000or more datapoints, while a 3-fold procedure is appropriate for smaller data sets

    The effect of gamma value on support vector machine performance with different kernels

    Get PDF
    Currently, the support vector machine (SVM) regarded as one of supervised machine learning algorithm that provides analysis of data for classification and regression. This technique is implemented in many fields such as bioinformatics, face recognition, text and hypertext categorization, generalized predictive control and many other different areas. The performance of SVM is affected by some parameters, which are used in the training phase, and the settings of parameters can have a profound impact on the resulting engine’s implementation. This paper investigated the SVM performance based on value of gamma parameter with used kernels. It studied the impact of gamma value on (SVM) efficiency classifier using different kernels on various datasets descriptions. SVM classifier has been implemented by using Python. The kernel functions that have been investigated are polynomials, radial based function (RBF) and sigmoid. UC irvine machine learning repository is the source of all the used datasets. Generally, the results show uneven effect on the classification accuracy of three kernels on used datasets. The changing of the gamma value taking on consideration the used dataset influences polynomial and sigmoid kernels. While the performance of RBF kernel function is more stable with different values of gamma as its accuracy is slightly changed

    Site-Specific Rules Extraction in Precision Agriculture

    Get PDF
    El incremento sostenible en la producción alimentaria para satisfacer las necesidades de una población mundial en aumento es un verdadero reto cuando tenemos en cuenta el impacto constante de plagas y enfermedades en los cultivos. Debido a las importantes pérdidas económicas que se producen, el uso de tratamientos químicos es demasiado alto; causando contaminación del medio ambiente y resistencia a distintos tratamientos. En este contexto, la comunidad agrícola divisa la aplicación de tratamientos más específicos para cada lugar, así como la validación automática con la conformidad legal. Sin embargo, la especificación de estos tratamientos se encuentra en regulaciones expresadas en lenguaje natural. Por este motivo, traducir regulaciones a una representación procesable por máquinas está tomando cada vez más importancia en la agricultura de precisión.Actualmente, los requisitos para traducir las regulaciones en reglas formales están lejos de ser cumplidos; y con el rápido desarrollo de la ciencia agrícola, la verificación manual de la conformidad legal se torna inabordable.En esta tesis, el objetivo es construir y evaluar un sistema de extracción de reglas para destilar de manera efectiva la información relevante de las regulaciones y transformar las reglas de lenguaje natural a un formato estructurado que pueda ser procesado por máquinas. Para ello, hemos separado la extracción de reglas en dos pasos. El primero es construir una ontología del dominio; un modelo para describir los desórdenes que producen las enfermedades en los cultivos y sus tratamientos. El segundo paso es extraer información para poblar la ontología. Puesto que usamos técnicas de aprendizaje automático, implementamos la metodología MATTER para realizar el proceso de anotación de regulaciones. Una vez creado el corpus, construimos un clasificador de categorías de reglas que discierne entre obligaciones y prohibiciones; y un sistema para la extracción de restricciones en reglas, que reconoce información relevante para retener el isomorfismo con la regulación original. Para estos componentes, empleamos, entre otra técnicas de aprendizaje profundo, redes neuronales convolucionales y “Long Short- Term Memory”. Además, utilizamos como baselines algoritmos más tradicionales como “support-vector machines” y “random forests”.Como resultado, presentamos la ontología PCT-O, que ha sido alineada con otras ontologías como NCBI, PubChem, ChEBI y Wikipedia. El modelo puede ser utilizado para la identificación de desórdenes, el análisis de conflictos entre tratamientos y la comparación entre legislaciones de distintos países. Con respecto a los sistemas de extracción, evaluamos empíricamente el comportamiento con distintas métricas, pero la métrica F1 es utilizada para seleccionar los mejores sistemas. En el caso del clasificador de categorías de reglas, el mejor sistema obtiene un macro F1 de 92,77% y un F1 binario de 85,71%. Este sistema usa una red “bidirectional long short-term memory” con “word embeddings” como entrada. En relación al extractor de restricciones de reglas, el mejor sistema obtiene un micro F1 de 88,3%. Este extractor utiliza como entrada una combinación de “character embeddings” junto a “word embeddings” y una red neuronal “bidirectional long short-term memory”.<br /

    Systematic sample subdividing strategy for training landslide susceptibility models

    Full text link
    © 2019 Elsevier B.V. Current practice in choosing training samples for landslide susceptibility modelling (LSM) is to randomly subdivide inventory information into training and testing samples. Where inventory data differ in distribution, the selection of training samples by a random process may cause inefficient training of machine learning (ML)/statistical models. A systematic technique may, however, produce efficient training samples that well represent the entire inventory data. This is particularly true when inventory information is scarce. This research proposed a systemic strategy to deal with this problem based on the fundamental distribution of probabilities (i.e. Hellinger) and a novel graphical representation of information contained in inventory data (i.e. inventory information curve, IIC). This graphical representation illustrates the relative increase in available information with the growth of the training sample size. Experiments on a selected dataset over the Cameron Highlands, Malaysia were conducted to validate the proposed methods. The dataset contained 104 landslide inventories and 7 landslide-conditioning factors (i.e. altitude, slope, aspect, land use, distance from the stream, distance from the road and distance from lineament) derived from a LiDAR-based digital elevation model and thematic maps acquired from government authorities. In addition, three ML/statistical models, namely, k-nearest neighbour (KNN), support vector machine (SVM) and decision tree (DT), were utilised to assess the proposed sampling strategy for LSM. The impacts of model's hyperparameters, noise and outliers on the performance of the models and the shape of IICs were also investigated and discussed. To evaluate the proposed method further, it was compared with other standard methods such as random sampling (RS), stratified RS (SRS) and cross-validation (CV). The evaluations were based on the area under the receiving characteristic curves. The results show that IICs are useful in explaining the information content in the training subset and their differences from the original inventory datasets. The quantitative evaluation with KNN, SVM and DT shows that the proposed method outperforms the RS and SRS in all the models and the CV method in KNN and DT models. The proposed sampling strategy enables new applications in landslide modelling, such as measuring inventory data content and complexity and selecting effective training samples to improve the predictive capability of landslide susceptibility models

    Big data analytics: Machine learning and Bayesian learning perspectives—What is done? What is not?

    Get PDF
    Big data analytics provides an interdisciplinary framework that is essential to support the current trend for solving real-world problems collaboratively. The progression of big data analytics framework must be clearly understood so that novel approaches can be developed to advance this state-of-the-art discipline. An ignorance of observing the progression of this fast-growing discipline may lead to duplications in research and waste of efforts. Its main companion field, machine learning, helps solve many big data analytics problems; therefore, it is also important to understand the progression of machine learning in the big data analytics framework. One of the current research efforts in big data analytics is the integration of deep learning and Bayesian optimization, which can help the automatic initialization and optimization of hyperparameters of deep learning and enhance the implementation of iterative algorithms in software. The hyperparameters include the weights used in deep learning, and the number of clusters in Bayesian mixture models that characterize data heterogeneity. The big data analytics research also requires computer systems and software that are capable of storing, retrieving, processing, and analyzing big data that are generally large, complex, heterogeneous, unstructured, unpredictable, and exposed to scalability problems. Therefore, it is appropriate to introduce a new research topic—transformative knowledge discovery—that provides a research ground to study and develop smart machine learning models and algorithms that are automatic, adaptive, and cognitive to address big data analytics problems and challenges. The new research domain will also create research opportunities to work on this interdisciplinary research space and develop solutions to support research in other disciplines that may not have expertise in the research area of big data analytics. For example, the research, such as detection and characterization of retinal diseases in medical sciences and the classification of highly interacting species in environmental sciences can benefit from the knowledge and expertise in big data analytics

    Analytics and Intelligence for Smart Manufacturing

    Get PDF
    Digital transformation is one of the main aspects emerged by the current 4.0 revolution. It embraces the integration between the digital and physical environment,including the application of modelling and simulation techniques, visualization, and data analytics in order to manage the overall product life cycle

    Expediting the accuracy-improving process of SVMs for class imbalance learning

    Get PDF
    National Research Foundation (NRF) Singapore under International Research Centres in Singapore Funding Initiativ
    corecore