2,375 research outputs found

    Empirical Comparative Analysis of 1-of-K Coding and K-Prototypes in Categorical Clustering

    Get PDF
    Clustering is a fundamental machine learning application, which partitions data into homogeneous groups. K-means and its variants are the most widely used class of clustering algorithms today. However, the original k-means algorithm can only be applied to numeric data. For categorical data, the data has to be converted into numeric data through 1-of-K coding which itself causes many problems. K-prototypes, another clustering algorithm that originates from the k-means algorithm, can handle categorical data by adopting a different notion of distance. In this paper, we systematically compare these two methods through an experimental analysis. Our analysis shows that K-prototypes is more suited when the dataset is large-scaled, while the performance of k-means with 1-of-K coding is more stable. We believe these are useful heuristics for clustering methods working with highly categorical data

    GOGGLES: Automatic Image Labeling with Affinity Coding

    Full text link
    Generating large labeled training data is becoming the biggest bottleneck in building and deploying supervised machine learning models. Recently, the data programming paradigm has been proposed to reduce the human cost in labeling training data. However, data programming relies on designing labeling functions which still requires significant domain expertise. Also, it is prohibitively difficult to write labeling functions for image datasets as it is hard to express domain knowledge using raw features for images (pixels). We propose affinity coding, a new domain-agnostic paradigm for automated training data labeling. The core premise of affinity coding is that the affinity scores of instance pairs belonging to the same class on average should be higher than those of pairs belonging to different classes, according to some affinity functions. We build the GOGGLES system that implements affinity coding for labeling image datasets by designing a novel set of reusable affinity functions for images, and propose a novel hierarchical generative model for class inference using a small development set. We compare GOGGLES with existing data programming systems on 5 image labeling tasks from diverse domains. GOGGLES achieves labeling accuracies ranging from a minimum of 71% to a maximum of 98% without requiring any extensive human annotation. In terms of end-to-end performance, GOGGLES outperforms the state-of-the-art data programming system Snuba by 21% and a state-of-the-art few-shot learning technique by 5%, and is only 7% away from the fully supervised upper bound.Comment: Published at 2020 ACM SIGMOD International Conference on Management of Dat

    Kernel Metric Learning for Clustering Mixed-type Data

    Full text link
    Distance-based clustering and classification are widely used in various fields to group mixed numeric and categorical data. A predefined distance measurement is used to cluster data points based on their dissimilarity. While there exist numerous distance-based measures for data with pure numerical attributes and several ordered and unordered categorical metrics, an optimal distance for mixed-type data is an open problem. Many metrics convert numerical attributes to categorical ones or vice versa. They handle the data points as a single attribute type or calculate a distance between each attribute separately and add them up. We propose a metric that uses mixed kernels to measure dissimilarity, with cross-validated optimal kernel bandwidths. Our approach improves clustering accuracy when utilized for existing distance-based clustering algorithms on simulated and real-world datasets containing pure continuous, categorical, and mixed-type data.Comment: 23 pages, 5 tables, 2 figure

    Nonparametric Hierarchical Clustering of Functional Data

    Full text link
    In this paper, we deal with the problem of curves clustering. We propose a nonparametric method which partitions the curves into clusters and discretizes the dimensions of the curve points into intervals. The cross-product of these partitions forms a data-grid which is obtained using a Bayesian model selection approach while making no assumptions regarding the curves. Finally, a post-processing technique, aiming at reducing the number of clusters in order to improve the interpretability of the clustering, is proposed. It consists in optimally merging the clusters step by step, which corresponds to an agglomerative hierarchical classification whose dissimilarity measure is the variation of the criterion. Interestingly this measure is none other than the sum of the Kullback-Leibler divergences between clusters distributions before and after the merges. The practical interest of the approach for functional data exploratory analysis is presented and compared with an alternative approach on an artificial and a real world data set

    A fuzzy taxonomy for e-Health projects

    Get PDF
    Evaluating the impact of Information Technology (IT) projects represents a problematic task for policy and decision makers aiming to define roadmaps based on previous experiences. Especially in the healthcare sector IT can support a wide range of processes and it is difficult to analyze in a comparative way the benefits and results of e-Health practices in order to define strategies and to assign priorities to potential investments. A first step towards the definition of an evaluation framework to compare e-Health initiatives consists in the definition of clusters of homogeneous projects that can be further analyzed through multiple case studies. However imprecision and subjectivity affect the classification of e-Health projects that are focused on multiple aspects of the complex healthcare system scenario. In this paper we apply a method, based on advanced cluster techniques and fuzzy theories, for validating a project taxonomy in the e-Health sector. An empirical test of the method has been performed over a set of European good practices in order to define a taxonomy for classifying e-Health projects.Evaluating the impact of Information Technology (IT) projects represents a problematic task for policy and decision makers aiming to define roadmaps based on previous experiences. Especially in the healthcare sector IT can support a wide range of processes and it is difficult to analyze in a comparative way the benefits and results of e-Health practices in order to define strategies and to assign priorities to potential investments. A first step towards the definition of an evaluation framework to compare e-Health initiatives consists in the definition of clusters of homogeneous projects that can be further analyzed through multiple case studies. However imprecision and subjectivity affect the classification of e-Health projects that are focused on multiple aspects of the complex healthcare system scenario. In this paper we apply a method, based on advanced cluster techniques and fuzzy theories, for validating a project taxonomy in the e-Health sector. An empirical test of the method has been performed over a set of European good practices in order to define a taxonomy for classifying e-Health projects.Articles published in or submitted to a Journal without IF refereed / of international relevanc

    Language impairment and colour categories

    Get PDF
    Goldstein (1948) reported multiple cases of failure to categorise colours in patients that he termed amnesic or anomic aphasics. these patients have a particular difficulty in producing perceptual categories in the absence of other aphasic impairments. we hold that neuropsychological evidence supports the view that the task of colour categorisation is logically impossible without labels

    Information Maximization Clustering via Multi-View Self-Labelling

    Full text link
    Image clustering is a particularly challenging computer vision task, which aims to generate annotations without human supervision. Recent advances focus on the use of self-supervised learning strategies in image clustering, by first learning valuable semantics and then clustering the image representations. These multiple-phase algorithms, however, increase the computational time and their final performance is reliant on the first stage. By extending the self-supervised approach, we propose a novel single-phase clustering method that simultaneously learns meaningful representations and assigns the corresponding annotations. This is achieved by integrating a discrete representation into the self-supervised paradigm through a classifier net. Specifically, the proposed clustering objective employs mutual information, and maximizes the dependency between the integrated discrete representation and a discrete probability distribution. The discrete probability distribution is derived though the self-supervised process by comparing the learnt latent representation with a set of trainable prototypes. To enhance the learning performance of the classifier, we jointly apply the mutual information across multi-crop views. Our empirical results show that the proposed framework outperforms state-of-the-art techniques with the average accuracy of 89.1% and 49.0%, respectively, on CIFAR-10 and CIFAR-100/20 datasets. Finally, the proposed method also demonstrates attractive robustness to parameter settings, making it ready to be applicable to other datasets

    A Survey of Adaptive Resonance Theory Neural Network Models for Engineering Applications

    Full text link
    This survey samples from the ever-growing family of adaptive resonance theory (ART) neural network models used to perform the three primary machine learning modalities, namely, unsupervised, supervised and reinforcement learning. It comprises a representative list from classic to modern ART models, thereby painting a general picture of the architectures developed by researchers over the past 30 years. The learning dynamics of these ART models are briefly described, and their distinctive characteristics such as code representation, long-term memory and corresponding geometric interpretation are discussed. Useful engineering properties of ART (speed, configurability, explainability, parallelization and hardware implementation) are examined along with current challenges. Finally, a compilation of online software libraries is provided. It is expected that this overview will be helpful to new and seasoned ART researchers

    How culture might constrain color categories

    Get PDF
    corecore