1,145 research outputs found

    Empirical Bounds on Linear Regions of Deep Rectifier Networks

    Full text link
    We can compare the expressiveness of neural networks that use rectified linear units (ReLUs) by the number of linear regions, which reflect the number of pieces of the piecewise linear functions modeled by such networks. However, enumerating these regions is prohibitive and the known analytical bounds are identical for networks with same dimensions. In this work, we approximate the number of linear regions through empirical bounds based on features of the trained network and probabilistic inference. Our first contribution is a method to sample the activation patterns defined by ReLUs using universal hash functions. This method is based on a Mixed-Integer Linear Programming (MILP) formulation of the network and an algorithm for probabilistic lower bounds of MILP solution sets that we call MIPBound, which is considerably faster than exact counting and reaches values in similar orders of magnitude. Our second contribution is a tighter activation-based bound for the maximum number of linear regions, which is particularly stronger in networks with narrow layers. Combined, these bounds yield a fast proxy for the number of linear regions of a deep neural network.Comment: AAAI 202

    Provably Good Solutions to the Knapsack Problem via Neural Networks of Bounded Size

    Full text link
    The development of a satisfying and rigorous mathematical understanding of the performance of neural networks is a major challenge in artificial intelligence. Against this background, we study the expressive power of neural networks through the example of the classical NP-hard Knapsack Problem. Our main contribution is a class of recurrent neural networks (RNNs) with rectified linear units that are iteratively applied to each item of a Knapsack instance and thereby compute optimal or provably good solution values. We show that an RNN of depth four and width depending quadratically on the profit of an optimum Knapsack solution is sufficient to find optimum Knapsack solutions. We also prove the following tradeoff between the size of an RNN and the quality of the computed Knapsack solution: for Knapsack instances consisting of nn items, an RNN of depth five and width ww computes a solution of value at least 1−O(n2/w)1-\mathcal{O}(n^2/\sqrt{w}) times the optimum solution value. Our results build upon a classical dynamic programming formulation of the Knapsack Problem as well as a careful rounding of profit values that are also at the core of the well-known fully polynomial-time approximation scheme for the Knapsack Problem. A carefully conducted computational study qualitatively supports our theoretical size bounds. Finally, we point out that our results can be generalized to many other combinatorial optimization problems that admit dynamic programming solution methods, such as various Shortest Path Problems, the Longest Common Subsequence Problem, and the Traveling Salesperson Problem.Comment: A short version of this paper appears in the proceedings of AAAI 202

    On the Depth of Deep Neural Networks: A Theoretical View

    Full text link
    People believe that depth plays an important role in success of deep neural networks (DNN). However, this belief lacks solid theoretical justifications as far as we know. We investigate role of depth from perspective of margin bound. In margin bound, expected error is upper bounded by empirical margin error plus Rademacher Average (RA) based capacity term. First, we derive an upper bound for RA of DNN, and show that it increases with increasing depth. This indicates negative impact of depth on test performance. Second, we show that deeper networks tend to have larger representation power (measured by Betti numbers based complexity) than shallower networks in multi-class setting, and thus can lead to smaller empirical margin error. This implies positive impact of depth. The combination of these two results shows that for DNN with restricted number of hidden units, increasing depth is not always good since there is a tradeoff between positive and negative impacts. These results inspire us to seek alternative ways to achieve positive impact of depth, e.g., imposing margin-based penalty terms to cross entropy loss so as to reduce empirical margin error without increasing depth. Our experiments show that in this way, we achieve significantly better test performance.Comment: AAAI 201
    • …
    corecore