28 research outputs found

    Beyond Games: A Systematic Review of Neural Monte Carlo Tree Search Applications

    Full text link
    The advent of AlphaGo and its successors marked the beginning of a new paradigm in playing games using artificial intelligence. This was achieved by combining Monte Carlo tree search, a planning procedure, and deep learning. While the impact on the domain of games has been undeniable, it is less clear how useful similar approaches are in applications beyond games and how they need to be adapted from the original methodology. We review 129 peer-reviewed articles detailing the application of neural Monte Carlo tree search methods in domains other than games. Our goal is to systematically assess how such methods are structured in practice and if their success can be extended to other domains. We find applications in a variety of domains, many distinct ways of guiding the tree search using learned policy and value functions, and various training methods. Our review maps the current landscape of algorithms in the family of neural monte carlo tree search as they are applied to practical problems, which is a first step towards a more principled way of designing such algorithms for specific problems and their requirements.Comment: 38 pages, 14 figures, submitted to Springer Applied Intelligenc

    Expert iteration

    Get PDF
    In this thesis, we study how reinforcement learning algorithms can tackle classical board games without recourse to human knowledge. Specifically, we develop a framework and algorithms which learn to play the board game Hex starting from random play. We first describe Expert Iteration (ExIt), a novel reinforcement learning framework which extends Modified Policy Iteration. ExIt explicitly decomposes the reinforcement learning problem into two parts: planning and generalisation. A planning algorithm explores possible move sequences starting from a particular position to find good strategies from that position, while a parametric function approximator is trained to predict those plans, generalising to states not yet seen. Subsequently, planning is improved by using the approximated policy to guide search, increasing the strength of new plans. This decomposition allows ExIt to combine the benefits of both planning methods and function approximation methods. We demonstrate the effectiveness of the ExIt paradigm by implementing ExIt with two different planning algorithms. First, we develop a version based on Monte Carlo Tree Search (MCTS), a search algorithm which has been successful both in specific games, such as Go, Hex and Havannah, and in general game playing competitions. We then develop a new planning algorithm, Policy Gradient Search (PGS), which uses a model-free reinforcement learning algorithm for online planning. Unlike MCTS, PGS does not require an explicit search tree. Instead PGS uses function approximation within a single search, allowing it to be applied to problems with larger branching factors. Both MCTS-ExIt and PGS-ExIt defeated MoHex 2.0 - the most recent Hex Olympiad winner to be open sourced - in 9 × 9 Hex. More importantly, whereas MoHex makes use of many Hex-specific improvements and knowledge, all our programs were trained tabula rasa using general reinforcement learning methods. This bodes well for ExIt’s applicability to both other games and real world decision making problems

    Low-resource learning in complex games

    Get PDF
    This project is concerned with learning to take decisions in complex domains, in games in particular. Previous work assumes that massive data resources are available for training, but aside from a few very popular games, this is generally not the case, and the state of the art in such circumstances is to rely extensively on hand-crafted heuristics. On the other hand, human players are able to quickly learn from only a handful of examples, exploiting specific characteristics of the learning problem to accelerate their learning process. Designing algorithms that function in a similar way is an open area of research and has many applications in today’s complex decision problems. One solution presented in this work is design learning algorithms that exploit the inherent structure of the game. Specifically, we take into account how the action space can be clustered into sets called types and exploit this characteristic to improve planning at decision time. Action types can also be leveraged to extract high-level strategies from a sparse corpus of human play, and this generates more realistic trajectories during planning, further improving performance. Another approach that proved successful is using an accurate model of the environment to reduce the complexity of the learning problem. Similar to how human players have an internal model of the world that allows them to focus on the relevant parts of the problem, we decouple learning to win from learning the rules of the game, thereby making supervised learning more data efficient. Finally, in order to handle partial observability that is usually encountered in complex games, we propose an extension to Monte Carlo Tree Search that plans in the Belief Markov Decision Process. We found that this algorithm doesn’t outperform the state of the art models on our chosen domain. Our error analysis indicates that the method struggles to handle the high uncertainty of the conditions required for the game to end. Furthermore, our relaxed belief model can cause rollouts in the belief space to be inaccurate, especially in complex games. We assess the proposed methods in an agent playing the highly complex board game Settlers of Catan. Building on previous research, our strongest agent combines planning at decision time with prior knowledge extracted from an available corpus of general human play; but unlike this prior work, our human corpus consists of only 60 games, as opposed to many thousands. Our agent defeats the current state of the art agent by a large margin, showing that the proposed modifications aid in exploiting general human play in highly complex games

    Robust and Efficient Planning using Adaptive Entropy Tree Search

    Full text link
    In this paper, we present the Adaptive EntropyTree Search (ANTS) algorithm. ANTS builds on recent successes of maximum entropy planning while mitigating its arguably major drawback - sensitivity to the temperature setting. We endow ANTS with a mechanism, which adapts the temperature to match a given range of action selection entropy in the nodes of the planning tree. With this mechanism, the ANTS planner enjoys remarkable hyper-parameter robustness, achieves high scores on the Atari benchmark, and is a capable component of a planning-learning loop akin to AlphaZero. We believe that all these features make ANTS a compelling choice for a general planner for complex tasks

    Adaptive sampling of transient environmental phenomena with autonomous mobile platforms

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics and Astronautics at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2019.In the environmental and earth sciences, hypotheses about transient phenomena have been universally investigated by collecting physical sample materials and performing ex situ analysis. Although the gold standard, logistical challenges limit the overall efficacy: the number of samples are limited to what can be stored and transported, human experts must be able to safely access or directly observe the target site, and time in the field and subsequently the laboratory, increases overall campaign expense. As a result, the temporal detail and spatial diversity in the samples may fail to capture insightful structure of the phenomenon of interest. The development of in situ instrumentation allows for near real-time analysis of physical phenomenon through observational strategies (e.g., optical), and in combination with unmanned mobile platforms, has considerably impacted field operations in the sciences. In practice, mobile platforms are either remotely operated or perform guided, supervised autonomous missions specified as navigation between humanselected waypoints. Missions like these are useful for gaining insight about a particular target site, but can be sample-sparse in scientifically valuable regions, particularly in complex or transient distributions. A skilled human expert and pilot can dynamically adjust mission trajectories based on sensor information. Encoding their insight onto a vehicle to enable adaptive sampling behaviors can broadly increase the utility of mobile platforms in the sciences. This thesis presents three field campaigns conducted with a human-piloted marine surface vehicle, the ChemYak, to study the greenhouse gases methane (CH4) and carbon dioxide (CO2) in estuaries, rivers, and the open ocean. These studies illustrate the utility of mobile surface platforms for environmental research, and highlight key challenges of studying transient phenomenon. This thesis then formalizes the maximum seek-and-sample (MSS) adaptive sampling problem, which requires a mobile vehicle to efficiently find and densely sample from the most scientifically valuable region in an a priori unknown, dynamic environment. The PLUMES algorithm — Plume Localization under Uncertainty using Maximum-ValuE information and Search—is subsequently presented, which addresses the MSS problem and overcomes key technical challenges with planning in natural environments. Theoretical performance guarantees are derived for PLUMES, and empirical performance is demonstrated against canonical uniform search and state-of-the-art baselines in simulation and field trials. Ultimately, this thesis examines the challenges of autonomous informative sampling in the environmental and earth sciences. In order to create useful systems that perform diverse scientific objectives in natural environments, approaches from robotics planning, field design, Bayesian optimization, machine learning, and the sciences must be drawn together. PLUMES captures the breadth and depth required to solve a specific objective within adaptive sampling, and this work as a whole highlights the potential for mobile technologies to perform intelligent autonomous science in the future

    Sample Efficient Monte Carlo Tree Search for Robotics

    Get PDF
    Artificial intelligent agents that behave like humans have become a defining theme and one of the main goals driving the rapid development of deep learning, particularly reinforcement learning (RL), in recent years. Monte-Carlo Tree Search (MCTS) is a class of methods for solving complex decision-making problems through the synergy of Monte-Carlo planning and Reinforcement Learning (RL). MCTS has yielded impressive results in Go (AlphaGo), Chess(AlphaZero), or video games, and it has been further exploited successfully in motion planning, autonomous car driving, and autonomous robotic assembly tasks. Many of the MCTS successes rely on coupling MCTS with neural networks trained using RL methods such as Deep Q-Learning, to speed up the learning of large-scale problems. Despite achieving state-of-the-art performance, the highly combinatorial nature of the problems commonly addressed by MCTS requires the use of efficient exploration-exploitation strategies for navigating the planning tree and quickly convergent value backup methods. Furthermore, large-scale problems such as Go and Chess games require the need for a sample efficient method to build an effective planning tree, which is crucial in on-the-fly decision making. These acute problems are particularly evident, especially in recent advances that combine MCTS with deep neural networks for function approximation. In addition, despite the recent success of applying MCTS to solve various autonomous robotics tasks, most of the scenarios, however, are partially observable and require an advanced planning method in complex, unstructured environments. This thesis aims to tackle the following question: How can robots plan efficiency under highly stochastic dynamic and partial observability? The following paragraphs will try to answer the question: First, we propose a novel backup strategy that uses the power mean operator, which computes a value between the average and maximum value. We call our new approach Power Mean Upper Confidence bound Tree (Power-UCT). We theoretically analyze our method providing guarantees of convergence to the optimum. Finally, we empirically demonstrate the effectiveness of our method in well-known Markov decision process (MDP) and partially observable Markov decision process (POMDP) benchmarks, showing significant improvement in terms of sample efficiency and convergence speed w.r.t. state-of-the-art algorithms. Second, we investigate an efficient exploration-exploitation planning strategy by providing a comprehensive theoretical convex regularization framework in MCTS. We derive the first regret analysis of regularized MCTS, showing that it guarantees an exponential convergence rate. Subsequently, we exploit our theoretical framework to introduce novel regularized backup operators for MCTS based on the relative entropy of the policy update and, more importantly, on the Tsallis entropy of the policy, for which we prove superior theoretical guarantees. Afterward, we empirically verify the consequence of our theoretical results on a toy problem. Eventually, we show how our framework can easily be incorporated in AlphaGo, and we empirically show the superiority of convex regularization, w.r.t. representative baselines, on well-known RL problems across several Atari games. Next, we take a further step to draw the connection between the two methods, Power-UCT and the convex regularization in MCTS, providing a rigorous theoretical study on the effectiveness of α-divergence in online Monte-Carlo planning. We show how the two methods can be related by using α-divergence. We additionally provide an in-depth study on the range of α parameter that helps to trade-off between exploration-exploitation in MCTS, hence showing how α-divergence can achieve state-of-the-art results in complex tasks. Finally, we investigate a novel algorithmic formulation of the popular MCTS algorithm for robot path planning. Notably, we study Monte-Carlo Path Planning (MCPP) by analyzing and proving, on the one part, its exponential convergence rate to the optimal path in fully observable MDPs, and on the other part, its probabilistic completeness for finding feasible paths in POMDPs (proof sketch) assuming limited distance observability. Our algorithmic contribution allows us to employ recently proposed variants of MCTS with different exploration strategies for robot path planning. Our experimental evaluations in simulated 2D and 3D environments with a 7 degrees of freedom (DOF) manipulator and in a real-world robot path planning task demonstrate the superiority of MCPP in POMDP tasks. In summary, this thesis proposes and analyses novel value backup operators and policy selection strategies both in terms of theoretical and experimental perspectives to help cope with sample efficiency and exploration-exploitation trade-off problems in MCTS and bring these advanced methods to robot path planning, showing the superiority in POMDPs w.r.t the state-of-the-art methods
    corecore