192 research outputs found

    #mytweet via Instagram: Exploring User Behaviour across Multiple Social Networks

    Full text link
    We study how users of multiple online social networks (OSNs) employ and share information by studying a common user pool that use six OSNs - Flickr, Google+, Instagram, Tumblr, Twitter, and YouTube. We analyze the temporal and topical signature of users' sharing behaviour, showing how they exhibit distinct behaviorial patterns on different networks. We also examine cross-sharing (i.e., the act of user broadcasting their activity to multiple OSNs near-simultaneously), a previously-unstudied behaviour and demonstrate how certain OSNs play the roles of originating source and destination sinks.Comment: IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, 2015. This is the pre-peer reviewed version and the final version is available at http://wing.comp.nus.edu.sg/publications/2015/lim-et-al-15.pd

    The Contagion Effects of Repeated Activation in Social Networks

    Get PDF
    Demonstrations, protests, riots, and shifts in public opinion respond to the coordinating potential of communication networks. Digital technologies have turned interpersonal networks into massive, pervasive structures that constantly pulsate with information. Here, we propose a model that aims to analyze the contagion dynamics that emerge in networks when repeated activation is allowed, that is, when actors can engage recurrently in a collective effort. We analyze how the structure of communication networks impacts on the ability to coordinate actors, and we identify the conditions under which large-scale coordination is more likely to emerge.Comment: Submitted for publicatio

    A Multilayer Naïve Bayes Model for Analyzing User’s Retweeting Sentiment Tendency

    Get PDF
    Today microblogging has increasingly become a means of information diffusion via user’s retweeting behavior. Since retweeting content, as context information of microblogging, is an understanding of microblogging, hence, user’s retweeting sentiment tendency analysis has gradually become a hot research topic. Targeted at online microblogging, a dynamic social network, we investigate how to exploit dynamic retweeting sentiment features in retweeting sentiment tendency analysis. On the basis of time series of user’s network structure information and published text information, we first model dynamic retweeting sentiment features. Then we build Naïve Bayes models from profile-, relationship-, and emotion-based dimensions, respectively. Finally, we build a multilayer Naïve Bayes model based on multidimensional Naïve Bayes models to analyze user’s retweeting sentiment tendency towards a microblog. Experiments on real-world dataset demonstrate the effectiveness of the proposed framework. Further experiments are conducted to understand the importance of dynamic retweeting sentiment features and temporal information in retweeting sentiment tendency analysis. What is more, we provide a new train of thought for retweeting sentiment tendency analysis in dynamic social networks

    Detecting the Influence of Spreading in Social Networks with Excitable Sensor Networks

    Full text link
    Detecting spreading outbreaks in social networks with sensors is of great significance in applications. Inspired by the formation mechanism of human's physical sensations to external stimuli, we propose a new method to detect the influence of spreading by constructing excitable sensor networks. Exploiting the amplifying effect of excitable sensor networks, our method can better detect small-scale spreading processes. At the same time, it can also distinguish large-scale diffusion instances due to the self-inhibition effect of excitable elements. Through simulations of diverse spreading dynamics on typical real-world social networks (facebook, coauthor and email social networks), we find that the excitable senor networks are capable of detecting and ranking spreading processes in a much wider range of influence than other commonly used sensor placement methods, such as random, targeted, acquaintance and distance strategies. In addition, we validate the efficacy of our method with diffusion data from a real-world online social system, Twitter. We find that our method can detect more spreading topics in practice. Our approach provides a new direction in spreading detection and should be useful for designing effective detection methods

    Theories for influencer identification in complex networks

    Full text link
    In social and biological systems, the structural heterogeneity of interaction networks gives rise to the emergence of a small set of influential nodes, or influencers, in a series of dynamical processes. Although much smaller than the entire network, these influencers were observed to be able to shape the collective dynamics of large populations in different contexts. As such, the successful identification of influencers should have profound implications in various real-world spreading dynamics such as viral marketing, epidemic outbreaks and cascading failure. In this chapter, we first summarize the centrality-based approach in finding single influencers in complex networks, and then discuss the more complicated problem of locating multiple influencers from a collective point of view. Progress rooted in collective influence theory, belief-propagation and computer science will be presented. Finally, we present some applications of influencer identification in diverse real-world systems, including online social platforms, scientific publication, brain networks and socioeconomic systems.Comment: 24 pages, 6 figure
    • …
    corecore