2,601 research outputs found

    Emotions detection on an ambient intelligent system using wearable devices

    Get PDF
    In this paper we present an Ambient Intelligent System, the iGenda, and the integration of a wearable device. The aim is to detect emotional states through the wearable device and ultimately represent and manage the social emotion of a group of entities. The advantage of this action is that its usability is in line with retirement homes and similar places, where the community is extended and an harmonious environment is imperative. The iGenda serves has the visual interface and the information centre, receiving the information from the wearable device and managing the community emotion by sending information to the care-receivers, caregivers, or changing home parameters (like music or lighting) to achieve an specific emotion (such as calm or excitement). Thus the goal is to provide an affective system that directly interacts with humans by discreetly improving their lifestyle.FCT - Fuel Cell Technologies Program (UID/CEC/00319/2013)info:eu-repo/semantics/publishedVersio

    Emotions detection on an ambient intelligent system using wearable devices

    Get PDF
    This paper presents the Emotional Smart Wristband and its integration with the iGenda. The aim is to detect emotional states of a group of entities through the wristband and send the social emotion value to the iGenda so it may change the home environment and notify the caregivers. This project is advantageous to communities of elderly people, like retirement homes, where a harmonious environment is imperative and where the number of inhabitants keeps increasing. The iGenda provides the visual interface and the information center, receiving the information from the Emotional Smart Wristband and tries achieve a specific emotion (such as calm or excitement). Thus, the goal is to provide an affective system that directly interacts with humans by discreetly improving their lifestyle. In this paper, it is described the wristband in depth and the data models, and is provided an evaluation of them performed by real individuals and the validation of this evaluation.- This work is supported by COMPETE, Portugal: POCI-01-0145-FEDER-007043 and FCT - Fundacao para a Ciencia e Tecnologi, Portugal a within the projects UID/CEC/00319/2013 and Post-Doc scholarship SFRH/BPD/102696/2014 (Angelo Costa) This work is partially supported by the MINECO/FEDER, Spain TIN2015-65515-C4-1-R and AP2013-01276 awarded to Jaime-Andres Rincon

    Bioengineered Textiles and Nonwovens – the convergence of bio-miniaturisation and electroactive conductive polymers for assistive healthcare, portable power and design-led wearable technology

    Get PDF
    Today, there is an opportunity to bring together creative design activities to exploit the responsive and adaptive ‘smart’ materials that are a result of rapid development in electro, photo active polymers or OFEDs (organic thin film electronic devices), bio-responsive hydrogels, integrated into MEMS/NEMS devices and systems respectively. Some of these integrated systems are summarised in this paper, highlighting their use to create enhanced functionality in textiles, fabrics and non-woven large area thin films. By understanding the characteristics and properties of OFEDs and bio polymers and how they can be transformed into implementable physical forms, innovative products and services can be developed, with wide implications. The paper outlines some of these opportunities and applications, in particular, an ambient living platform, dealing with human centred needs, of people at work, people at home and people at play. The innovative design affords the accelerated development of intelligent materials (interactive, responsive and adaptive) for a new product & service design landscape, encompassing assistive healthcare (smart bandages and digital theranostics), ambient living, renewable energy (organic PV and solar textiles), interactive consumer products, interactive personal & beauty care (e-Scent) and a more intelligent built environment

    Analysis and use of the emotional context with wearable devices for games and intelligent assistants

    Get PDF
    In this paper, we consider the use of wearable sensors for providing affect-based adaptation in Ambient Intelligence (AmI) systems. We begin with discussion of selected issues regarding the applications of affective computing techniques. We describe our experiments for affect change detection with a range of wearable devices, such as wristbands and the BITalino platform, and discuss an original software solution, which we developed for this purpose. Furthermore, as a test-bed application for our work, we selected computer games. We discuss the state-of-the-art in affect-based adaptation in games, described in terms of the so-called affective loop. We present our original proposal of a conceptual design framework for games, called the affective game design patterns. As a proof-of-concept realization of this approach, we discuss some original game prototypes, which we have developed, involving emotion-based control and adaptation. Finally, we comment on a software framework, that we have previously developed, for context-aware systems which uses human emotional contexts. This framework provides means for implementing adaptive systems using mobile devices with wearable sensors

    Ambient Intelligence in Healthcare: A State-of-the-Art

    Get PDF
    Information technology advancement leads to an innovative paradigm called Ambient Intelligence (AmI). A digital environment is employed along with AmI to enable individuals to be aware to their behaviors, needs, emotions and gestures. Several applications of the AmI systems in healthcare environment attract several researchers. AmI is considered one of the recent technologies that support hospitals, patients, and specialists for personal healthcare with the aid of artificial intelligence techniques and wireless sensor networks. The improvement in the wearable devices, mobile devices, embedded software and wireless technologies open the doors to advanced applications in the AmI paradigm. The WSN and the BAN collect medical data to be used for the progress of the intelligent systems adapted inevitably. The current study outlines the AmI role in healthcare concerning with its relational and technological nature. Health

    Emotions in context: examining pervasive affective sensing systems, applications, and analyses

    Get PDF
    Pervasive sensing has opened up new opportunities for measuring our feelings and understanding our behavior by monitoring our affective states while mobile. This review paper surveys pervasive affect sensing by examining and considering three major elements of affective pervasive systems, namely; “sensing”, “analysis”, and “application”. Sensing investigates the different sensing modalities that are used in existing real-time affective applications, Analysis explores different approaches to emotion recognition and visualization based on different types of collected data, and Application investigates different leading areas of affective applications. For each of the three aspects, the paper includes an extensive survey of the literature and finally outlines some of challenges and future research opportunities of affective sensing in the context of pervasive computing

    Machine Understanding of Human Behavior

    Get PDF
    A widely accepted prediction is that computing will move to the background, weaving itself into the fabric of our everyday living spaces and projecting the human user into the foreground. If this prediction is to come true, then next generation computing, which we will call human computing, should be about anticipatory user interfaces that should be human-centered, built for humans based on human models. They should transcend the traditional keyboard and mouse to include natural, human-like interactive functions including understanding and emulating certain human behaviors such as affective and social signaling. This article discusses a number of components of human behavior, how they might be integrated into computers, and how far we are from realizing the front end of human computing, that is, how far are we from enabling computers to understand human behavior
    • 

    corecore