3,157 research outputs found

    Speech Emotion Recognition Using Multi-hop Attention Mechanism

    Full text link
    In this paper, we are interested in exploiting textual and acoustic data of an utterance for the speech emotion classification task. The baseline approach models the information from audio and text independently using two deep neural networks (DNNs). The outputs from both the DNNs are then fused for classification. As opposed to using knowledge from both the modalities separately, we propose a framework to exploit acoustic information in tandem with lexical data. The proposed framework uses two bi-directional long short-term memory (BLSTM) for obtaining hidden representations of the utterance. Furthermore, we propose an attention mechanism, referred to as the multi-hop, which is trained to automatically infer the correlation between the modalities. The multi-hop attention first computes the relevant segments of the textual data corresponding to the audio signal. The relevant textual data is then applied to attend parts of the audio signal. To evaluate the performance of the proposed system, experiments are performed in the IEMOCAP dataset. Experimental results show that the proposed technique outperforms the state-of-the-art system by 6.5% relative improvement in terms of weighted accuracy.Comment: 5 pages, Accepted as a conference paper at ICASSP 2019 (oral presentation

    Two-pass decision tree construction for unsupervised adaptation of HMM-based synthesis models

    Get PDF
    Hidden Markov model (HMM) -based speech synthesis systems possess several advantages over concatenative synthesis systems. One such advantage is the relative ease with which HMM-based systems are adapted to speakers not present in the training dataset. Speaker adaptation methods used in the field of HMM-based automatic speech recognition (ASR) are adopted for this task. In the case of unsupervised speaker adaptation, previous work has used a supplementary set of acoustic models to firstly estimate the transcription of the adaptation data. By defining a mapping between HMM-based synthesis models and ASR-style models, this paper introduces an approach to the unsupervised speaker adaptation task for HMM-based speech synthesis models which avoids the need for supplementary acoustic models. Further, this enables unsupervised adaptation of HMM-based speech synthesis models without the need to perform linguistic analysis of the estimated transcription of the adaptation data

    I hear you eat and speak: automatic recognition of eating condition and food type, use-cases, and impact on ASR performance

    Get PDF
    We propose a new recognition task in the area of computational paralinguistics: automatic recognition of eating conditions in speech, i. e., whether people are eating while speaking, and what they are eating. To this end, we introduce the audio-visual iHEARu-EAT database featuring 1.6 k utterances of 30 subjects (mean age: 26.1 years, standard deviation: 2.66 years, gender balanced, German speakers), six types of food (Apple, Nectarine, Banana, Haribo Smurfs, Biscuit, and Crisps), and read as well as spontaneous speech, which is made publicly available for research purposes. We start with demonstrating that for automatic speech recognition (ASR), it pays off to know whether speakers are eating or not. We also propose automatic classification both by brute-forcing of low-level acoustic features as well as higher-level features related to intelligibility, obtained from an Automatic Speech Recogniser. Prediction of the eating condition was performed with a Support Vector Machine (SVM) classifier employed in a leave-one-speaker-out evaluation framework. Results show that the binary prediction of eating condition (i. e., eating or not eating) can be easily solved independently of the speaking condition; the obtained average recalls are all above 90%. Low-level acoustic features provide the best performance on spontaneous speech, which reaches up to 62.3% average recall for multi-way classification of the eating condition, i. e., discriminating the six types of food, as well as not eating. The early fusion of features related to intelligibility with the brute-forced acoustic feature set improves the performance on read speech, reaching a 66.4% average recall for the multi-way classification task. Analysing features and classifier errors leads to a suitable ordinal scale for eating conditions, on which automatic regression can be performed with up to 56.2% determination coefficient

    Deep factorization for speech signal

    Full text link
    Various informative factors mixed in speech signals, leading to great difficulty when decoding any of the factors. An intuitive idea is to factorize each speech frame into individual informative factors, though it turns out to be highly difficult. Recently, we found that speaker traits, which were assumed to be long-term distributional properties, are actually short-time patterns, and can be learned by a carefully designed deep neural network (DNN). This discovery motivated a cascade deep factorization (CDF) framework that will be presented in this paper. The proposed framework infers speech factors in a sequential way, where factors previously inferred are used as conditional variables when inferring other factors. We will show that this approach can effectively factorize speech signals, and using these factors, the original speech spectrum can be recovered with a high accuracy. This factorization and reconstruction approach provides potential values for many speech processing tasks, e.g., speaker recognition and emotion recognition, as will be demonstrated in the paper.Comment: Accepted by ICASSP 2018. arXiv admin note: substantial text overlap with arXiv:1706.0177
    • …
    corecore