1,022 research outputs found

    Neural correlates of enhanced visual short-term memory for angry faces: An fMRI study

    Get PDF
    Copyright: © 2008 Jackson et al.Background: Fluid and effective social communication requires that both face identity and emotional expression information are encoded and maintained in visual short-term memory (VSTM) to enable a coherent, ongoing picture of the world and its players. This appears to be of particular evolutionary importance when confronted with potentially threatening displays of emotion - previous research has shown better VSTM for angry versus happy or neutral face identities.Methodology/Principal Findings: Using functional magnetic resonance imaging, here we investigated the neural correlates of this angry face benefit in VSTM. Participants were shown between one and four to-be-remembered angry, happy, or neutral faces, and after a short retention delay they stated whether a single probe face had been present or not in the previous display. All faces in any one display expressed the same emotion, and the task required memory for face identity. We find enhanced VSTM for angry face identities and describe the right hemisphere brain network underpinning this effect, which involves the globus pallidus, superior temporal sulcus, and frontal lobe. Increased activity in the globus pallidus was significantly correlated with the angry benefit in VSTM. Areas modulated by emotion were distinct from those modulated by memory load.Conclusions/Significance: Our results provide evidence for a key role of the basal ganglia as an interface between emotion and cognition, supported by a frontal, temporal, and occipital network.The authors were supported by a Wellcome Trust grant (grant number 077185/Z/05/Z) and by BBSRC (UK) grant BBS/B/16178

    Neural mechanisms of social cognition – the mirror neuron system and beyond

    Get PDF
    In my PhD thesis, I present three functional magnetic resonance imaging studies aimed at investigating neurobiological mechanisms underlying social cognition. My thesis focuses on fast and automatic processes that are proposed to build the basis of social understanding, and might be activated in parallel to more effortful deliberate mechanisms. The proposed neural substrate of fast and automatic processes are mirror neurons, which according to the theory of embodied simulation allow humans to understand other individuals’ actions, and even emotions and intentions. Since non-invasive techniques cannot be applied to measure mirror neurons, but only neural populations assumed to constitute the mirror neuron system, experimental paradigms and analysis routines that allow approximation of mirror neuron functions need to be developed. In study 1, I demonstrated that different social cognitive skills, including imitation, affective empathy and theory of mind share a common neural basis, located in regions associated with the mirror neuron system. In addition to standard analyses, a shared voxel analysis was applied that revealed common activation for social-cognitive processes not only across, but also within participants. Study 2 was set up to investigate whether the mirror neuron system can distinguish the valence of facial configurations. The use of a functional magnetic resonance imaging adaptation paradigm allowed to determine neural populations sensitive to emotional valence. While the fusiform gyrus was sensitive to changes from fearful to smiling faces and also from smiling to fearful faces, Brodmann area 44 reaching into insula, and superior temporal sulcus, i.e. regions more commonly associated with the mirror neuron system and with the so called mentalizing network, showed particularly increased activation for switches from smiling to fearful faces. Study 3 was dedicated to the investigation of decision making in the context of ambiguous facial configurations. While probabilistic decision making on these facial configurations lead to activation in the executive control network, final decisions for an emotion resulted in nucleus accumbens activation. In addition, perceiving fear in a face lead to higher nucleus accumbens activation during final decisions than perceiving happiness. This finding can be linked to salience processing in the nucleus accumbens. In conclusion, all three studies show an involvement of fast and automatic processing regions for different social-cognitive processes. Study 3 additionally examined the interaction with slower and more deliberate processes, as involved in probabilistic decision making on ambiguous faces. The mirror neuron system seems to be critically involved in different social-cognitive tasks and also sensitive to emotional valence. In cases when automatic processing is not possible, as when presented with ambiguous facial configurations, brain regions commonly associated with probabilistic decision making assist, and the nucleus accumbens, possibly by directing salience, is involved in the final decision. These results deepen the understanding of the mechanisms of social cognition and encourage the use of sophisticated methods in experimental paradigms and analysis

    On the neural basis of emotion processing in depression and anxiety : an fMRI study in outpatients

    Get PDF
    The wide implications of emotions in our social and private life, and the far-reaching consequences of dysfunctions in emotional processing, have made emotion one of the most widely studied psychological processes. During the last decades, there have been numerous attempts to formulate neurobiological and cognitive theories of emotion. Mental disorders, e.g., schizophrenia, bipolar disorders, mood disorder, anxiety, are associated with dysfunction of emotional processing. These dysfunctions may be caused by abnormalities at neural level. From all psychiatric disorders characterized by emotional disturbance, major depressive disorder and anxiety disorders are the most prevalent in our society. For outcome improvement, a clear delineation of the neural mechanism of emotional processing in community-based outpatients is of fundamental importance to understanding their underlying mechanisms. We use the functional magnetic resonance imaging (fMRI) method for studying different cognitive and emotional functions in major depressive disorder and anxiety disorders. The findings presented herein indicate that dysfunctions in the neural circuitry of emotional processing are different in depression and anxiety. Furthermore we find that comorbidity of depression and anxiety cannot be regarded as a summation of the two. We also show that even if there are no gross abnormalities at the neural level, abnormalities in the neural network may cause dysfunctions of emotional processes in mild-remitted patients and participants with high vulnerability for affective disorders. This finding unveils a much more complex picture of emotion perception than the present day theories account for. De brede implicaties van emoties in ons sociale en privéleven, en de verstrekkende gevolgen van problemen in de verwerking van emoties, hebben emotie één van de meest bestudeerde psychologische processen gemaakt. De laatste decennia zijn talrijke pogingen gedaan om neurobiologische en cognitieve theorieën van emotie te formuleren. Mentale stoornissen, zoals schizofrenie, en bipolaire, stemmings-, en angststoornissen, zijn geassocieerd met problemen in de verwerking van emoties. Deze disfuncties zouden op neuronaal niveau veroorzaakt kunnen worden. De meest voorkomende psychiatrische stoornissen in onze samenleving zijn depressie en angststoornissen. Voor het verbeteren van het behandelresultaat, is het van fundamenteel belang om inzicht te krijgen in de neurale mechanismen, die betrokken zijn bij de verwerking van emoties in poliklinische patiënten uit de gemeenschap. We gebruiken de methode van functionele magnetische resonantie (fMRI) om verschillende cognitieve en emotionele functies te onderzoeken in depressie en angststoornissen. De bevindingen, die hier worden gepresenteerd, geven aan dat disfuncties in het neurale circuit van emotieverwerking verschillend zijn in depressie en angst. Verder, vinden we dat comorbiditeit van depressie en angst niet kan worden opgevat als een simpele opsomming van de twee. Ook laten we zien dat, ondanks er geen grote verschillen met gezonde personen aanwezig zijn op neuronaal niveau, abnormaliteiten in het neurale netwerk disfuncties kunnen veroorzaken in de emotionele verwerking van licht verbeterde patiënten en personen met een hoge kwetsbaarheid voor affectieve stoornissen. Deze bevinding onthult een gecompliceerder beeld van de perceptie van emotie dan huidige theorieën aangeven.

    Lying about the Valence of Affective Pictures: An fMRI Study

    Get PDF
    The neural correlates of lying about affective information were studied using a functional magnetic resonance imaging (fMRI) methodology. Specifically, 13 healthy right-handed Chinese men were instructed to lie about the valence, positive or negative, of pictures selected from the International Affective Picture System (IAPS) while their brain activity was scanned by a 3T Philip Achieva scanner. The key finding is that the neural activity associated with deception is valence-related. Comparing to telling the truth, deception about the valence of the affectively positive pictures was associated with activity in the inferior frontal, cingulate, inferior parietal, precuneus, and middle temporal regions. Lying about the valence of the affectively negative pictures, on the other hand, was associated with activity in the orbital and medial frontal regions. While a clear valence-related effect on deception was observed, common neural regions were also recruited for the process of deception about the valence of the affective pictures. These regions included the lateral prefrontal and inferior parietal regions. Activity in these regions has been widely reported in fMRI studies on deception using affectively-neutral stimuli. The findings of this study reveal the effect of valence on the neural activity associated with deception. Furthermore, the data also help to illustrate the complexity of the neural mechanisms underlying deception

    Atypical eye contact in autism: Models, mechanisms and development

    Get PDF
    An atypical pattern of eye contact behaviour is one of the most significant symptoms of Autism Spectrum Disorder (ASD). Recent empirical advances have revealed the developmental, cognitive and neural basis of atypical eye contact behaviour in ASD. We review different models and advance a new ‘fast-track modulator model’. Specifically, we propose that atypical eye contact processing in ASD originates in the lack of influence from a subcortical face and eye contact detection route, which is hypothesized to modulate eye contact processing and guide its emergent specialization during development

    Dissociable Neural Systems Underwrite Logical Reasoning in the Context of Induced Emotions with Positive and Negative Valence

    Get PDF
    How emotions influence syllogistic reasoning is not well understood. fMRI was employed to investigate the effects of induced positive or negative emotion on syllogistic reasoning. Specifically, on a trial-by-trial basis participants were exposed to a positive, negative, or neutral picture, immediately prior to engagement in a reasoning task. After viewing and rating the valence and intensity of each picture, participants indicated by keypress whether or not the conclusion of the syllogism followed logically from the premises. The content of all syllogisms was neutral, and the influence of belief-bias was controlled for in the study design. Emotion did not affect reasoning performance, although there was a trend in the expected direction based on accuracy rates for the positive (63%) and negative (64%) versus neutral (70%) condition. Nevertheless, exposure to positive and negative pictures led to dissociable patterns of neural activation during reasoning. Therefore, the neural basis of deductive reasoning differs as a function of the valence of the context

    Personality Modulates the Effects of Emotional Arousal and Valence on Brain Activation

    Get PDF
    The influence of personality on the neural correlates of emotional processing is still not well characterized. We investigated the relationship between extraversion and neuroticism and emotional perception using functional magnetic resonance imaging (fMRI) in a group of 23 young, healthy women. Using a parametric modulation approach, we examined how the blood oxygenation level dependent (BOLD) signal varied with the participants’ ratings of arousal and valence, and whether levels of extraversion and neuroticism were related to these modulations. In particular, we wished to test Eysenck\u27s biological theory of personality, which links high extraversion to lower levels of reticulothalamic–cortical arousal, and neuroticism to increased reactivity of the limbic system and stronger reactions to emotional arousal. Individuals high in neuroticism demonstrated reduced sustained activation in the orbitofrontal cortex (OFC) and attenuated valence processing in the right temporal lobe while viewing emotional images, but an increased BOLD response to emotional arousal in the right medial prefrontal cortex (mPFC). These results support Eysenck\u27s theory, as well as our hypothesis that high levels of neuroticism are associated with attenuated reward processing. Extraversion was inversely related to arousal processing in the right cerebellum, but positively associated with arousal processing in the right insula, indicating that the relationship between extraversion and arousal is not as simple as that proposed by Eysenck

    Personality affects musical emotion processing : an fMRI study

    Get PDF
    Music has an important role in our everyday lives. It is a powerful way of conveying and inducing emotions. It is even described as the language of emotions. Still, the research on the processing of musical emotions and its variations among individuals is scarce. In addition, it is not known whether the same or different neural pathways are recruited when musical emotions are processed with or without conscious awareness (i.e., implicitly or explicitly). The central aims of this thesis are 1. to examine the neural basis of the processing of musical emotions, namely happy, sad and fearful, 2. to determine the neural networks underlying the implicit and explicit processing of musical emotions and 3. to discern the effects of personality on this processing. 31 participants (mean age 27.4 years, 9 men) attended the study. Functional magnetic resonance imaging (fMRI) was used to assess the brain activation as the participants listened to musical excerpts expressing three emotions: sadness, happiness, and fear. In the implicit paradigm, participants estimated how many instruments they heard in the stimulus (one, two or many). In the explicit paradigm, participants chose the emotion that best described the stimulus (happy, sad, or fearful). Personality was evaluated using two personality questionnaires, NEO-FFI and S5. Each of the three emotions studied activated different brain regions. Processing of happy music activated the auditory cortex, processing of sad music activated the limbic and frontal areas, and processing of fearful music activated areas of the limbic system, the frontal cortex and the motor cortex. As was expected, implicit processing of musical emotions recruited both cortical and subcortical regions whereas explicit processing activated mainly cortical regions. In addition, personality traits of neuroticism, extraversion and openness affected the processing of musical emotions. Neuroticism correlated with increased activation in the temporal and frontal lobe in response to music expressing negative emotions, and in the subcortical areas in response to happy music. Extraversion correlated with decreased activation in the limbic areas in response to happy music. Openness correlated with activations in the occipital regions in response to happy and sad music. These results highlight the importance of individual differences in the processing of musical emotions and offer perspectives on the applied use of music in health care and educational settings.Musiikki on osa jokapäiväistä elämäämme. Musiikilla on myös erityisen vahva rooli tunteiden tulkinnassa ja välittämisessä. Musiikillisten tunteiden prosessoinnista hermoston tasolla sekä siinä ilmenevistä yksilöllisistä eroista tiedetään kuitenkin hyvin vähän. Emme myöskään tiedä, aktivoiko musiikillisten tunteiden prosessointi eri aivoalueita kun prosessointi tapahtuu ilman tietoista kontrollia (implisiittisesti) tai tietoisesti (eksplisiittisesti). Tämän tutkielman tavoitteena on tarkastella 1. musiikillisten tunteiden, erityisesti ilon, surun ja pelon, prosessoinnin aivoperustaa, 2. musiikin tietoisen ja tiedostamattoman prosessoinnin mahdollisia erillisiä hermoverkostoja, sekä 3. persoonallisuuden vaikutusta musiikillisten tunteiden prosessointiin. Toiminnallisella magneettikuvauksella (fMRI) suoritettuun tutkimukseen osallistui 31 koehenkilöä (keski-ikä 27.4 vuotta, 9 miestä). Kokeen aikana koehenkilöt kuuntelivat kolmea tunnetilaa (ilo, suru, pelko) kuvaavia musiikkinäytteitä. Tiedostamattoman prosessoinnin koeasetelmassa koehenkilöiden tehtävänä oli tunnistaa näytteessä kuultujen soitinten lukumäärä (yksi, kaksi, useampi). Tietoisen prosessoinnin koeasetelmassa koehenkilöitä pyydettiin tunnistamaan musiikkinäytteen tunnetila (ilo, suru, pelko). Koehenkilöiden persoonallisuutta arvioitiin kahden kyselylomakkeen, NEO-FFI:n ja S5:n, avulla. Jokainen tutkituista tunteista tuotti toisistaan eriäviä aivoaktivaatioita. Iloisen musiikin prosessointi aiheutti lisääntynyttä aktivaatiota kuuloaivokuorella, surullisen musiikin prosessointi limbisillä ja otsalohkon alueella, ja pelottavan musiikin prosessointi limbisillä, otsalohkon sekä liikeaivokuoren alueilla. Kuten oletettiinkin, tiedostamaton musiikillisten tunteiden prosessointi aktivoi sekä aivokuoren että aivokuoren alaisia alueita. Tiedostettu prosessointi sen sijaan aktivoi pääasiassa alueita aivokuorella. Persoonallisuuden piirteistä neuroottisuudella, ulospäin suuntautuneisuudella ja avoimuudella huomattiin olevan yhteyttä musiikillisten tunteiden prosessointiin. Neuroottisuus oli yhteydessä lisääntyneeseen aktivaatioon ohimolohkon ja otsalohkon alueilla prosessoitaessa negatiivisia tunteita, sekä aivokuoren alaisten alueiden aktivaatioon prosessoitaessa iloista musiikkia. Ulospäin suuntautuneisuus sen sijaan oli yhteydessä vähentyneeseen aktivaatioon limbisillä alueilla prosessoitaessa iloista musiikkia. Avoimuus oli yhteydessä takaraivolohkon aktivaatioon prosessoitaessa iloista ja surullista musiikkia. Nämä tulokset korostavat yksilöllisten erojen tärkeyttä musiikin prosessoinnissa sekä tarjoavat näkökulmia musiikin soveltavaan käyttöön esimerkiksi terveydenhoidossa ja opetuksessa
    corecore