41 research outputs found

    Tracking the Temporal-Evolution of Supernova Bubbles in Numerical Simulations

    Get PDF
    The study of low-dimensional, noisy manifolds embedded in a higher dimensional space has been extremely useful in many applications, from the chemical analysis of multi-phase flows to simulations of galactic mergers. Building a probabilistic model of the manifolds has helped in describing their essential properties and how they vary in space. However, when the manifold is evolving through time, a joint spatio-temporal modelling is needed, in order to fully comprehend its nature. We propose a first-order Markovian process that propagates the spatial probabilistic model of a manifold at fixed time, to its adjacent temporal stages. The proposed methodology is demonstrated using a particle simulation of an interacting dwarf galaxy to describe the evolution of a cavity generated by a Supernov

    Text Similarity Between Concepts Extracted from Source Code and Documentation

    Get PDF
    Context: Constant evolution in software systems often results in its documentation losing sync with the content of the source code. The traceability research field has often helped in the past with the aim to recover links between code and documentation, when the two fell out of sync. Objective: The aim of this paper is to compare the concepts contained within the source code of a system with those extracted from its documentation, in order to detect how similar these two sets are. If vastly different, the difference between the two sets might indicate a considerable ageing of the documentation, and a need to update it. Methods: In this paper we reduce the source code of 50 software systems to a set of key terms, each containing the concepts of one of the systems sampled. At the same time, we reduce the documentation of each system to another set of key terms. We then use four different approaches for set comparison to detect how the sets are similar. Results: Using the well known Jaccard index as the benchmark for the comparisons, we have discovered that the cosine distance has excellent comparative powers, and depending on the pre-training of the machine learning model. In particular, the SpaCy and the FastText embeddings offer up to 80% and 90% similarity scores. Conclusion: For most of the sampled systems, the source code and the documentation tend to contain very similar concepts. Given the accuracy for one pre-trained model (e.g., FastText), it becomes also evident that a few systems show a measurable drift between the concepts contained in the documentation and in the source code.</p

    XXII International Conference on Mechanics in Medicine and Biology - Abstracts Book

    Get PDF
    This book contain the abstracts presented the XXII ICMMB, held in Bologna in September 2022. The abstracts are divided following the sessions scheduled during the conference

    Texture and Colour in Image Analysis

    Get PDF
    Research in colour and texture has experienced major changes in the last few years. This book presents some recent advances in the field, specifically in the theory and applications of colour texture analysis. This volume also features benchmarks, comparative evaluations and reviews

    AI and IoT for Production Data Analytics in SMEs

    Get PDF

    A data fusion-based hybrid sensory system for older people’s daily activity recognition.

    Get PDF
    Population aged 60 and over is growing faster. Ageing-caused changes, such as physical or cognitive decline, could affect people’s quality of life, resulting in injuries, mental health or the lack of physical activity. Sensor-based human activity recognition (HAR) has become one of the most promising assistive technologies for older people’s daily life. Literature in HAR suggests that each sensor modality has its strengths and limitations and single sensor modalities may not cope with complex situations in practice. This research aims to design and implement a hybrid sensory HAR system to provide more comprehensive, practical and accurate surveillance for older people to assist them living independently. This reseach: 1) designs and develops a hybrid HAR system which provides a spatio- temporal surveillance system for older people by combining the wrist-worn sensors and the room-mounted ambient sensors (passive infrared); the wearable data are used to recognize the defined specific daily activities, and the ambient information is used to infer the occupant’s room-level daily routine; 2): proposes a unique and effective data fusion method to hybridize the two-source sensory data, in which the captured room-level location information from the ambient sensors is also utilized to trigger the sub classification models pretrained by room-assigned wearable data; 3): implements augmented features which are extracted from the attitude angles of the wearable device and explores the contribution of the new features to HAR; 4:) proposes a feature selection (FS) method in the view of kernel canonical correlation analysis (KCCA) to maximize the relevance between the feature candidate and the target class labels and simultaneously minimizes the joint redundancy between the already selected features and the feature candidate, named mRMJR-KCCA; 5:) demonstrates all the proposed methods above with the ground-truth data collected from recruited participants in home settings. The proposed system has three function modes: 1) the pure wearable sensing mode (the whole classification model) which can identify all the defined specific daily activities together and function alone when the ambient sensing fails; 2) the pure ambient sensing mode which can deliver the occupant’s room-level daily routine without wearable sensing; and 3) the data fusion mode (room-based sub classification mode) which provides a more comprehensive and accurate surveillance HAR when both the wearable sensing and ambient sensing function properly. The research also applies the mutual information (MI)-based FS methods for feature selection, Support Vector Machine (SVM) and Random Forest (RF) for classification. The experimental results demonstrate that the proposed hybrid sensory system improves the recognition accuracy to 98.96% after applying data fusion using Random Forest (RF) classification and mRMJR-KCCA feature selection. Furthermore, the improved results are achieved with a much smaller number of features compared with the scenario of recognizing all the defined activities using wearable data alone. The research work conducted in the thesis is unique, which is not directly compared with others since there are few other similar existing works in terms of the proposed data fusion method and the introduced new feature set

    Networking Architecture and Key Technologies for Human Digital Twin in Personalized Healthcare: A Comprehensive Survey

    Full text link
    Digital twin (DT), refers to a promising technique to digitally and accurately represent actual physical entities. One typical advantage of DT is that it can be used to not only virtually replicate a system's detailed operations but also analyze the current condition, predict future behaviour, and refine the control optimization. Although DT has been widely implemented in various fields, such as smart manufacturing and transportation, its conventional paradigm is limited to embody non-living entities, e.g., robots and vehicles. When adopted in human-centric systems, a novel concept, called human digital twin (HDT) has thus been proposed. Particularly, HDT allows in silico representation of individual human body with the ability to dynamically reflect molecular status, physiological status, emotional and psychological status, as well as lifestyle evolutions. These prompt the expected application of HDT in personalized healthcare (PH), which can facilitate remote monitoring, diagnosis, prescription, surgery and rehabilitation. However, despite the large potential, HDT faces substantial research challenges in different aspects, and becomes an increasingly popular topic recently. In this survey, with a specific focus on the networking architecture and key technologies for HDT in PH applications, we first discuss the differences between HDT and conventional DTs, followed by the universal framework and essential functions of HDT. We then analyze its design requirements and challenges in PH applications. After that, we provide an overview of the networking architecture of HDT, including data acquisition layer, data communication layer, computation layer, data management layer and data analysis and decision making layer. Besides reviewing the key technologies for implementing such networking architecture in detail, we conclude this survey by presenting future research directions of HDT
    corecore