2,954 research outputs found

    Identification of suitable biomarkers for stress and emotion detection for future personal affective wearable sensors

    Get PDF
    Skin conductivity (i.e., sweat) forms the basis of many physiology-based emotion and stress detection systems. However, such systems typically do not detect the biomarkers present in sweat, and thus do not take advantage of the biological information in the sweat. Likewise, such systems do not detect the volatile organic components (VOC’s) created under stressful conditions. This work presents a review into the current status of human emotional stress biomarkers and proposes the major potential biomarkers for future wearable sensors in affective systems. Emotional stress has been classified as a major contributor in several social problems, related to crime, health, the economy, and indeed quality of life. While blood cortisol tests, electroencephalography and physiological parameter methods are the gold standards for measuring stress; however, they are typically invasive or inconvenient and not suitable for wearable real-time stress monitoring. Alternatively, cortisol in biofluids and VOCs emitted from the skin appear to be practical and useful markers for sensors to detect emotional stress events. This work has identified antistress hormones and cortisol metabolites as the primary stress biomarkers that can be used in future sensors for wearable affective systems

    Emotion Detection Using Noninvasive Low Cost Sensors

    Full text link
    Emotion recognition from biometrics is relevant to a wide range of application domains, including healthcare. Existing approaches usually adopt multi-electrodes sensors that could be expensive or uncomfortable to be used in real-life situations. In this study, we investigate whether we can reliably recognize high vs. low emotional valence and arousal by relying on noninvasive low cost EEG, EMG, and GSR sensors. We report the results of an empirical study involving 19 subjects. We achieve state-of-the- art classification performance for both valence and arousal even in a cross-subject classification setting, which eliminates the need for individual training and tuning of classification models.Comment: To appear in Proceedings of ACII 2017, the Seventh International Conference on Affective Computing and Intelligent Interaction, San Antonio, TX, USA, Oct. 23-26, 201

    Emotions in context: examining pervasive affective sensing systems, applications, and analyses

    Get PDF
    Pervasive sensing has opened up new opportunities for measuring our feelings and understanding our behavior by monitoring our affective states while mobile. This review paper surveys pervasive affect sensing by examining and considering three major elements of affective pervasive systems, namely; “sensing”, “analysis”, and “application”. Sensing investigates the different sensing modalities that are used in existing real-time affective applications, Analysis explores different approaches to emotion recognition and visualization based on different types of collected data, and Application investigates different leading areas of affective applications. For each of the three aspects, the paper includes an extensive survey of the literature and finally outlines some of challenges and future research opportunities of affective sensing in the context of pervasive computing

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems

    Emotion Detection Research: A Systematic Review Focuses on Data Type, Classifier Algorithm, and Experimental Methods

    Get PDF
    There is a lot of research being done on detecting human emotions. Emotion detection models are developed based on physiological data. With the development of low-cost wearable devices that measure human physiological data such as brain activity, heart rate, and skin conductivity, this research can be conducted in developing countries like Southeast Asia. However, as far as the author's research is concerned, a literature review has yet to be found on how this research on emotion detection was carried out in Southeast Asia. Therefore, this study aimed to conduct a systematic review of emotion detection research in Southeast Asia, focusing on the selection of physiological data, classification methods, and how the experiment was conducted according to the number of participants and duration. Using PRISMA guidelines, 22 SCOPUS-indexed journal articles and proceedings were reviewed. The review found that physiological data were dominated by brain activity data with the Muse Headband, followed by heart rate and skin conductivity collected with various wristbands, from around 5-31 participants, for 8 minutes to 7 weeks. Classification analysis applies machine learning, deep learning, and traditional statistics. The experiments were conducted primarily in sitting and standing positions, conditioned environments (for developing research), and unconditioned environments (applied research). This review concluded that future research opportunities exist regarding other data types, data labeling methods, and broader applications. These reviews will contribute to the enrichment of ideas and the development of emotion recognition research in Southeast Asian countries in the future
    • 

    corecore