34,630 research outputs found

    Adversarial Training in Affective Computing and Sentiment Analysis: Recent Advances and Perspectives

    Get PDF
    Over the past few years, adversarial training has become an extremely active research topic and has been successfully applied to various Artificial Intelligence (AI) domains. As a potentially crucial technique for the development of the next generation of emotional AI systems, we herein provide a comprehensive overview of the application of adversarial training to affective computing and sentiment analysis. Various representative adversarial training algorithms are explained and discussed accordingly, aimed at tackling diverse challenges associated with emotional AI systems. Further, we highlight a range of potential future research directions. We expect that this overview will help facilitate the development of adversarial training for affective computing and sentiment analysis in both the academic and industrial communities

    Combination of Domain Knowledge and Deep Learning for Sentiment Analysis of Short and Informal Messages on Social Media

    Full text link
    Sentiment analysis has been emerging recently as one of the major natural language processing (NLP) tasks in many applications. Especially, as social media channels (e.g. social networks or forums) have become significant sources for brands to observe user opinions about their products, this task is thus increasingly crucial. However, when applied with real data obtained from social media, we notice that there is a high volume of short and informal messages posted by users on those channels. This kind of data makes the existing works suffer from many difficulties to handle, especially ones using deep learning approaches. In this paper, we propose an approach to handle this problem. This work is extended from our previous work, in which we proposed to combine the typical deep learning technique of Convolutional Neural Networks with domain knowledge. The combination is used for acquiring additional training data augmentation and a more reasonable loss function. In this work, we further improve our architecture by various substantial enhancements, including negation-based data augmentation, transfer learning for word embeddings, the combination of word-level embeddings and character-level embeddings, and using multitask learning technique for attaching domain knowledge rules in the learning process. Those enhancements, specifically aiming to handle short and informal messages, help us to enjoy significant improvement in performance once experimenting on real datasets.Comment: A Preprint of an article accepted for publication by Inderscience in IJCVR on September 201

    SentiCap: Generating Image Descriptions with Sentiments

    Full text link
    The recent progress on image recognition and language modeling is making automatic description of image content a reality. However, stylized, non-factual aspects of the written description are missing from the current systems. One such style is descriptions with emotions, which is commonplace in everyday communication, and influences decision-making and interpersonal relationships. We design a system to describe an image with emotions, and present a model that automatically generates captions with positive or negative sentiments. We propose a novel switching recurrent neural network with word-level regularization, which is able to produce emotional image captions using only 2000+ training sentences containing sentiments. We evaluate the captions with different automatic and crowd-sourcing metrics. Our model compares favourably in common quality metrics for image captioning. In 84.6% of cases the generated positive captions were judged as being at least as descriptive as the factual captions. Of these positive captions 88% were confirmed by the crowd-sourced workers as having the appropriate sentiment

    Style Transfer in Text: Exploration and Evaluation

    Full text link
    Style transfer is an important problem in natural language processing (NLP). However, the progress in language style transfer is lagged behind other domains, such as computer vision, mainly because of the lack of parallel data and principle evaluation metrics. In this paper, we propose to learn style transfer with non-parallel data. We explore two models to achieve this goal, and the key idea behind the proposed models is to learn separate content representations and style representations using adversarial networks. We also propose novel evaluation metrics which measure two aspects of style transfer: transfer strength and content preservation. We access our models and the evaluation metrics on two tasks: paper-news title transfer, and positive-negative review transfer. Results show that the proposed content preservation metric is highly correlate to human judgments, and the proposed models are able to generate sentences with higher style transfer strength and similar content preservation score comparing to auto-encoder.Comment: To appear in AAAI-1
    • …
    corecore