1,204 research outputs found

    Audio-tactile stimuli to improve health and well-being : a preliminary position paper

    Get PDF
    From literature and through common experience it is known that stimulation of the tactile (touch) sense or auditory (hearing) sense can be used to improve people's health and well-being. For example, to make people relax, feel better, sleep better or feel comforted. In this position paper we propose the concept of combined auditory-tactile stimulation and argue that it potentially has positive effects on human health and well-being through influencing a user's body and mental state. Such effects have, to date, not yet been fully explored in scientific research. The current relevant state of the art is briefly addressed and its limitations are indicated. Based on this, a vision is presented of how auditory-tactile stimulation could be used in healthcare and various other application domains. Three interesting research challenges in this field are identified: 1) identifying relevant mechanisms of human perception of combined auditory-tactile stimuli; 2) finding methods for automatic conversions between audio and tactile content; 3) using measurement and analysis of human bio-signals and behavior to adapt the stimulation in an optimal way to the user. Ideas and possible routes to address these challenges are presented

    The design, analysis and evaluation of a humanoid robotic head

    Get PDF
    Where robots interact directly with humans on a ‘one-to-one’ basis, it is often quite important for them to be emotionally acceptable, hence the growing interesting in humanoid robots. In some applications it is important that these robots do not just resemble a human being in appearance, but also move like a human being too, to make them emotionally acceptable – hence the interest in biomimetic humanoid robotics. The research described in this thesis is concerned with the design, analysis and evaluation of a biomimetic humanoid robotic head. It is biomimetic in terms of physical design - which is based around a simulated cervical spine, and actuation, which is achieved using pneumatic air muscles (PAMS). The primary purpose of the research, however, and the main original contribution, was to create a humanoid robotic head capable of mimicking complex non-purely rotational human head movements. These include a sliding front-to-back, lateral movement, and a sliding, side-to-side lateral movement. A number of different approaches were considered and evaluated, before finalising the design. As there are no generally accepted metrics in the literature regarding the full range of human head movements, the best benchmarks for comparison are the angular ranges and speeds of humans in terms on pitch (nod), roll (tilt) and yaw (rotate) were used for comparison, and these they were considered desired ranges for the robot. These measured up well in comparison in terms of angular speed and some aspects of range of human necks. Additionally, the lateral movements were measured during the nod, tilt and rotate movements, and established the ability of the robot to perform the complex lateral movements seen in humans, thus proving the benefits of the cervical spine approach. Finally, the emotional acceptance of the robot movements was evaluated against another (commercially made) robot and a human. This was a blind test, in that the (human) evaluators had no way of knowing whether they were evaluation a human or a robot. The tests demonstrated that on scales of Fake/Natural, Machinelike/Humanlike and Unconcsious/Conscious the robot the robot scored similarly to the human

    A Characterization of Actuation Techniques for Generating Movement in Shape-Changing Interfaces

    Get PDF
    Abstract This article characterizes actuation techniques for generating movement in shape-changing displays with physically reconfigurable geometry. To date, few works in Human Computer Interaction literature provide detailed and reflective descriptions of the implementation techniques used in shape-changing displays. This hinders the rapid development of novel interactions as researchers must initially spend time understanding technologies before prototyping new interactions and applications. To bridge this knowledge gap, we propose a taxonomy that classifies actuator characteristics and simplifies the process for designers to select appropriate technologies that match their requirements for developing shape-displays. We scope our investigation to linear actuators that are used in grid configurations. The taxonomy is validated by (a) examining current implementation techniques of motorized, pneumatic, hydraulic, magnetic, and shape-memory actuators in the literature, (b) constructing prototypes to address limited technical details and explore actuator capabilities in depth, (c) describing a use-case scenario through a case study that details the construction of a 10 ? 10 actuator shape-display, and (d) a set of guidelines to aid researchers in selecting actuation techniques for shape-changing applications. The significance of our taxonomy is twofold. First, we provide an original contribution that enables HCI researchers to appropriately select actuation techniques and build shape-changing applications. This is situated amongst other past works that have investigated broader application scenarios such as a shape-changing vocabulary, a framework for shape transformations, material properties, and technical characteristics of various actuators. Second, we carry out in-depth investigations to validate our taxonomy and expand the knowledge of vertical actuation in shape-changing applications to enable rapid development

    A review on model-based and model-free approaches to control soft actuators and their potentials in colonoscopy

    Get PDF
    Colorectal cancer (CRC) is the third most common cancer worldwide and responsible for approximately 1 million deaths annually. Early screening is essential to increase the chances of survival, and it can also reduce the cost of treatments for healthcare centres. Colonoscopy is the gold standard for CRC screening and treatment, but it has several drawbacks, including difficulty in manoeuvring the device, patient discomfort, and high cost. Soft endorobots, small and compliant devices thatcan reduce the force exerted on the colonic wall, offer a potential solution to these issues. However, controlling these soft robots is challenging due to their deformable materials and the limitations of mathematical models. In this Review, we discuss model-free and model-based approaches for controlling soft robots that can potentially be applied to endorobots for colonoscopy. We highlight the importance of selecting appropriate control methods based on various parameters, such as sensor and actuator solutions. This review aims to contribute to the development of smart control strategies for soft endorobots that can enhance the effectiveness and safety of robotics in colonoscopy. These strategies can be defined based on the available information about the robot and surrounding environment, control demands, mechanical design impact and characterization data based on calibration.<br/

    Rehabilitation Technologies: Biomechatronics Point of View

    Get PDF

    Turing-Test Evaluation of a Mobile Haptic Virtual Reality Kissing Machine

    Get PDF
    Various communication systems have been developed to integrate the haptic channel in digital communication. Future directions of such haptic technologies are moving towards realistic virtual reality applications and human-robot social interaction. With the digitisation of touch, robots equipped with touch sensors and actuators can communicate with humans on a more emotional and intimate level, such as sharing a hug or kiss just like humans do. This paper presents the design guideline, implementation and evaluations of a novel haptic kissing machine for smart phones - the Kissenger machine. The key novelties and contributions of the paper are: (i) A novel haptic kissing device for mobile phones, which uses dynamic perpendicular force stimulation to transmit realistic sensations of kissing in order to enhance intimacy and emotional connection of digital communication; (ii) Extensive evaluations of the Kissenger machine, including a lab experiment that compares mediated kissing with Kissenger to real kissing, a unique haptic Turing test that involves the first academic study of humanmachine kiss, and a field study of the effects of Kissenger on long distance relationships

    Physical human-robot collaboration: Robotic systems, learning methods, collaborative strategies, sensors, and actuators

    Get PDF
    This article presents a state-of-the-art survey on the robotic systems, sensors, actuators, and collaborative strategies for physical human-robot collaboration (pHRC). This article starts with an overview of some robotic systems with cutting-edge technologies (sensors and actuators) suitable for pHRC operations and the intelligent assist devices employed in pHRC. Sensors being among the essential components to establish communication between a human and a robotic system are surveyed. The sensor supplies the signal needed to drive the robotic actuators. The survey reveals that the design of new generation collaborative robots and other intelligent robotic systems has paved the way for sophisticated learning techniques and control algorithms to be deployed in pHRC. Furthermore, it revealed the relevant components needed to be considered for effective pHRC to be accomplished. Finally, a discussion of the major advances is made, some research directions, and future challenges are presented
    • …
    corecore