115,011 research outputs found

    Decision making and social neurocognition during adolescence

    Get PDF
    Adolescents show a tendency to engage in risky activities, such as dangerous driving and unsafe sex. This has led to the suggestion that adolescents are poor decision-makers, and are risk-seeking in general. The first two chapters of this thesis describe studies investigating adolescent decision-making using probabilistic decision-making tasks. In Chapter 2, the tendency to seek risk, and the ability to integrate probability and reward information to make an optimal decision, is investigated in child, adolescent and adult participants. The emotional response to outcomes was also investigated. In Chapter 3, a computational approach is adopted to investigate the role of positive and negative performance feedback (wins and losses) in a probabilistic decision-making task in adolescents and in adults. The role of social-emotional factors in decision-making was also investigated. Adolescence is characterised by social and emotional development, as well as development in the functional brain correlates of social-emotional processing. Therefore, Chapters 4 to 6 focus on adolescent social-emotional processing using behavioural and functional neuroimaging methods. In Chapter 4, results are presented from a study of self-reported social and basic emotions across adolescence, where social emotions (e.g. embarrassment) are defined as emotions that require an awareness of others’ mental states (e.g. emotions, opinions, desires). In Chapter 5, the neural correlates of social and basic emotion processing are investigated in adolescents and in adults, using functional magnetic resonance imaging (fMRI). Finally, in Chapter 6, these fMRI data are reanalysed using a technique known as psycho-physiological interaction (PPI) analysis, to look at age-associated changes in effective connectivity. Results are discussed in the context of social cognition and neuroanatomical development

    The role of social cognition in decision making

    Get PDF
    Successful decision making in a social setting depends on our ability to understand the intentions, emotions and beliefs of others. The mirror system allows us to understand other people's motor actions and action intentions. ‘Empathy’ allows us to understand and share emotions and sensations with others. ‘Theory of mind’ allows us to understand more abstract concepts such as beliefs or wishes in others. In all these cases, evidence has accumulated that we use the specific neural networks engaged in processing mental states in ourselves to understand the same mental states in others. However, the magnitude of the brain activity in these shared networks is modulated by contextual appraisal of the situation or the other person. An important feature of decision making in a social setting concerns the interaction of reason and emotion. We consider four domains where such interactions occur: our sense of fairness, altruistic punishment, trust and framing effects. In these cases, social motivations and emotions compete with each other, while higher-level control processes modulate the interactions of these low-level biases

    Embodied Robot Models for Interdisciplinary Emotion Research

    Get PDF
    Due to their complex nature, emotions cannot be properly understood from the perspective of a single discipline. In this paper, I discuss how the use of robots as models is beneficial for interdisciplinary emotion research. Addressing this issue through the lens of my own research, I focus on a critical analysis of embodied robots models of different aspects of emotion, relate them to theories in psychology and neuroscience, and provide representative examples. I discuss concrete ways in which embodied robot models can be used to carry out interdisciplinary emotion research, assessing their contributions: as hypothetical models, and as operational models of specific emotional phenomena, of general emotion principles, and of specific emotion ``dimensions''. I conclude by discussing the advantages of using embodied robot models over other models.Peer reviewe

    What does the amygdala contribute to social cognition?

    Get PDF
    The amygdala has received intense recent attention from neuroscientists investigating its function at the molecular, cellular, systems, cognitive, and clinical level. It clearly contributes to processing emotionally and socially relevant information, yet a unifying description and computational account have been lacking. The difficulty of tying together the various studies stems in part from the sheer diversity of approaches and species studied, in part from the amygdala's inherent heterogeneity in terms of its component nuclei, and in part because different investigators have simply been interested in different topics. Yet, a synthesis now seems close at hand in combining new results from social neuroscience with data from neuroeconomics and reward learning. The amygdala processes a psychological stimulus dimension related to saliency or relevance; mechanisms have been identified to link it to processing unpredictability; and insights from reward learning have situated it within a network of structures that include the prefrontal cortex and the ventral striatum in processing the current value of stimuli. These aspects help to clarify the amygdala's contributions to recognizing emotion from faces, to social behavior toward conspecifics, and to reward learning and instrumental behavior

    The social brain: neural basis of social knowledge

    Get PDF
    Social cognition in humans is distinguished by psychological processes that allow us to make inferences about what is going on inside other people—their intentions, feelings, and thoughts. Some of these processes likely account for aspects of human social behavior that are unique, such as our culture and civilization. Most schemes divide social information processing into those processes that are relatively automatic and driven by the stimuli, versus those that are more deliberative and controlled, and sensitive to context and strategy. These distinctions are reflected in the neural structures that underlie social cognition, where there is a recent wealth of data primarily from functional neuroimaging. Here I provide a broad survey of the key abilities, processes, and ways in which to relate these to data from cognitive neuroscience

    Negotiating Relationally: The Dynamics of the Relational Self In Negotiations

    Get PDF
    Although negotiation research is thriving, it has been criticized as having an arelational bias—emphasizing autonomy, competition, and rationality over interdependence, cooperation, and relationality. In this article, we advance a new model of relationality in negotiation. Drawing on research in social psychology, we describe the construct of relational self-construals (RSC) and present a temporal model of RSC and negotiation. After delineating the conditions through which RSC becomes accessible in negotiation and conditions that inhibit its use, we discuss how RSC affects negotiators\u27 pre-negotiation psychological states, early and later tactics, and negotiation outcomes. We illustrate a number of distinct relational dynamics that can occur based on the dyadic composition of RSC, each of which brings distinct benefits and costs to the negotiation table. Implications for the science and practice of negotiation are discussed

    The Effects of Discrete Emotions on Risky Decision Making

    Get PDF
    Contrary to the dominant view that generally equates feelings with poor thinking, converging evidence indicates that decisions – including those involving risk – are influenced by affective experiences. Research, however, is limited to studies on undifferentiated, global positive versus negative mood states; less is known about the influence of discrete emotions. The purpose of this research was to extend the affect-cognition literature by (a) examining the effects of discrete emotions varying along the dimensions of valence and arousal, and (b) identifying the systematic ways that discrete emotions underlie risky decision making. We used a set of emotion-laden IAPS images to elicit and compare the impact of incidental emotions on risky decision making. One hundred and twenty-two undergraduate students were randomly assigned to one of the four affective conditions: excitement, contentment, fear, and sadness. Following the emotion induction procedure, participants completed the Choice Dilemmas Questionnaire (CDQ) to assess their risk-taking propensity. Results indicated an interaction effect between valence and arousal for positive emotions, such that excited participants were significantly more risky in their decision making compared to contented participants. The discussion focuses on the theoretical and practical health implications of these findings. We recommend that future research capitalize on the insights gained from emotion research and use it favorably to improve decision making under risk

    Neural mechanisms of social cognition – the mirror neuron system and beyond

    Get PDF
    In my PhD thesis, I present three functional magnetic resonance imaging studies aimed at investigating neurobiological mechanisms underlying social cognition. My thesis focuses on fast and automatic processes that are proposed to build the basis of social understanding, and might be activated in parallel to more effortful deliberate mechanisms. The proposed neural substrate of fast and automatic processes are mirror neurons, which according to the theory of embodied simulation allow humans to understand other individuals’ actions, and even emotions and intentions. Since non-invasive techniques cannot be applied to measure mirror neurons, but only neural populations assumed to constitute the mirror neuron system, experimental paradigms and analysis routines that allow approximation of mirror neuron functions need to be developed. In study 1, I demonstrated that different social cognitive skills, including imitation, affective empathy and theory of mind share a common neural basis, located in regions associated with the mirror neuron system. In addition to standard analyses, a shared voxel analysis was applied that revealed common activation for social-cognitive processes not only across, but also within participants. Study 2 was set up to investigate whether the mirror neuron system can distinguish the valence of facial configurations. The use of a functional magnetic resonance imaging adaptation paradigm allowed to determine neural populations sensitive to emotional valence. While the fusiform gyrus was sensitive to changes from fearful to smiling faces and also from smiling to fearful faces, Brodmann area 44 reaching into insula, and superior temporal sulcus, i.e. regions more commonly associated with the mirror neuron system and with the so called mentalizing network, showed particularly increased activation for switches from smiling to fearful faces. Study 3 was dedicated to the investigation of decision making in the context of ambiguous facial configurations. While probabilistic decision making on these facial configurations lead to activation in the executive control network, final decisions for an emotion resulted in nucleus accumbens activation. In addition, perceiving fear in a face lead to higher nucleus accumbens activation during final decisions than perceiving happiness. This finding can be linked to salience processing in the nucleus accumbens. In conclusion, all three studies show an involvement of fast and automatic processing regions for different social-cognitive processes. Study 3 additionally examined the interaction with slower and more deliberate processes, as involved in probabilistic decision making on ambiguous faces. The mirror neuron system seems to be critically involved in different social-cognitive tasks and also sensitive to emotional valence. In cases when automatic processing is not possible, as when presented with ambiguous facial configurations, brain regions commonly associated with probabilistic decision making assist, and the nucleus accumbens, possibly by directing salience, is involved in the final decision. These results deepen the understanding of the mechanisms of social cognition and encourage the use of sophisticated methods in experimental paradigms and analysis

    Towards Learning ‘Self’ and Emotional Knowledge in Social and Cultural Human-Agent Interactions

    Get PDF
    Original article can be found at: http://www.igi-global.com/articles/details.asp?ID=35052 Copyright IGI. Posted by permission of the publisher.This article presents research towards the development of a virtual learning environment (VLE) inhabited by intelligent virtual agents (IVAs) and modeling a scenario of inter-cultural interactions. The ultimate aim of this VLE is to allow users to reflect upon and learn about intercultural communication and collaboration. Rather than predefining the interactions among the virtual agents and scripting the possible interactions afforded by this environment, we pursue a bottomup approach whereby inter-cultural communication emerges from interactions with and among autonomous agents and the user(s). The intelligent virtual agents that are inhabiting this environment are expected to be able to broaden their knowledge about the world and other agents, which may be of different cultural backgrounds, through interactions. This work is part of a collaborative effort within a European research project called eCIRCUS. Specifically, this article focuses on our continuing research concerned with emotional knowledge learning in autobiographic social agents.Peer reviewe
    corecore