21,103 research outputs found

    Machine Understanding of Human Behavior

    Get PDF
    A widely accepted prediction is that computing will move to the background, weaving itself into the fabric of our everyday living spaces and projecting the human user into the foreground. If this prediction is to come true, then next generation computing, which we will call human computing, should be about anticipatory user interfaces that should be human-centered, built for humans based on human models. They should transcend the traditional keyboard and mouse to include natural, human-like interactive functions including understanding and emulating certain human behaviors such as affective and social signaling. This article discusses a number of components of human behavior, how they might be integrated into computers, and how far we are from realizing the front end of human computing, that is, how far are we from enabling computers to understand human behavior

    Affective Medicine: a review of Affective Computing efforts in Medical Informatics

    Get PDF
    Background: Affective computing (AC) is concerned with emotional interactions performed with and through computers. It is defined as “computing that relates to, arises from, or deliberately influences emotions”. AC enables investigation and understanding of the relation between human emotions and health as well as application of assistive and useful technologies in the medical domain. Objectives: 1) To review the general state of the art in AC and its applications in medicine, and 2) to establish synergies between the research communities of AC and medical informatics. Methods: Aspects related to the human affective state as a determinant of the human health are discussed, coupled with an illustration of significant AC research and related literature output. Moreover, affective communication channels are described and their range of application fields is explored through illustrative examples. Results: The presented conferences, European research projects and research publications illustrate the recent increase of interest in the AC area by the medical community. Tele-home healthcare, AmI, ubiquitous monitoring, e-learning and virtual communities with emotionally expressive characters for elderly or impaired people are few areas where the potential of AC has been realized and applications have emerged. Conclusions: A number of gaps can potentially be overcome through the synergy of AC and medical informatics. The application of AC technologies parallels the advancement of the existing state of the art and the introduction of new methods. The amount of work and projects reviewed in this paper witness an ambitious and optimistic synergetic future of the affective medicine field

    Semi-Supervised Speech Emotion Recognition with Ladder Networks

    Full text link
    Speech emotion recognition (SER) systems find applications in various fields such as healthcare, education, and security and defense. A major drawback of these systems is their lack of generalization across different conditions. This problem can be solved by training models on large amounts of labeled data from the target domain, which is expensive and time-consuming. Another approach is to increase the generalization of the models. An effective way to achieve this goal is by regularizing the models through multitask learning (MTL), where auxiliary tasks are learned along with the primary task. These methods often require the use of labeled data which is computationally expensive to collect for emotion recognition (gender, speaker identity, age or other emotional descriptors). This study proposes the use of ladder networks for emotion recognition, which utilizes an unsupervised auxiliary task. The primary task is a regression problem to predict emotional attributes. The auxiliary task is the reconstruction of intermediate feature representations using a denoising autoencoder. This auxiliary task does not require labels so it is possible to train the framework in a semi-supervised fashion with abundant unlabeled data from the target domain. This study shows that the proposed approach creates a powerful framework for SER, achieving superior performance than fully supervised single-task learning (STL) and MTL baselines. The approach is implemented with several acoustic features, showing that ladder networks generalize significantly better in cross-corpus settings. Compared to the STL baselines, the proposed approach achieves relative gains in concordance correlation coefficient (CCC) between 3.0% and 3.5% for within corpus evaluations, and between 16.1% and 74.1% for cross corpus evaluations, highlighting the power of the architecture

    Awareness and Readiness of Malaysian University Students for Emotion Recognition System

    Get PDF
    Emotion Recognition System (ERS) identifies human emotion like happiness, sadness, anger, disgust and fear. These emotions can be detected via various modalities such as facial expression analysis, voice intonation, and physiological signals like the brain’s electroencephalogram (EEG) and heart’s electrocardiogram (ECG).  The emotion recognition system allows machines to recognized human emotions and reacts to it. It offers broad areas of application, from smart home automation to entertainment recommendation system to driving assistance and to automated security system. It is a promising and interesting field to be explored especially as we are moving towards industrial revolution 5.0. Therefore, a survey was conducted on the awareness and readiness of the usage of emotion recognition system among Malaysian youths, specifically among university students. The findings are presented here. Overall, positive orientation towards the technology is observed among the participants and they are ready for its adoptio

    Multi-perspective cost-sensitive context-aware multi-instance sparse coding and its application to sensitive video recognition

    Get PDF
    With the development of video-sharing websites, P2P, micro-blog, mobile WAP websites, and so on, sensitive videos can be more easily accessed. Effective sensitive video recognition is necessary for web content security. Among web sensitive videos, this paper focuses on violent and horror videos. Based on color emotion and color harmony theories, we extract visual emotional features from videos. A video is viewed as a bag and each shot in the video is represented by a key frame which is treated as an instance in the bag. Then, we combine multi-instance learning (MIL) with sparse coding to recognize violent and horror videos. The resulting MIL-based model can be updated online to adapt to changing web environments. We propose a cost-sensitive context-aware multi- instance sparse coding (MI-SC) method, in which the contextual structure of the key frames is modeled using a graph, and fusion between audio and visual features is carried out by extending the classic sparse coding into cost-sensitive sparse coding. We then propose a multi-perspective multi- instance joint sparse coding (MI-J-SC) method that handles each bag of instances from an independent perspective, a contextual perspective, and a holistic perspective. The experiments demonstrate that the features with an emotional meaning are effective for violent and horror video recognition, and our cost-sensitive context-aware MI-SC and multi-perspective MI-J-SC methods outperform the traditional MIL methods and the traditional SVM and KNN-based methods
    corecore