866 research outputs found

    Detecting head movement using gyroscope data collected via in-ear wearables

    Get PDF
    Abstract. Head movement is considered as an effective, natural, and simple method to determine the pointing towards an object. Head movement detection technology has significant potentiality in diverse field of applications and studies in this field verify such claim. The application includes fields like users interaction with computers, controlling many devices externally, power wheelchair operation, detecting drivers’ drowsiness while they drive, video surveillance system, and many more. Due to the diversity in application, the method of detecting head movement is also wide-ranging. A number of approaches such as acoustic-based, video-based, computer-vision based, inertial sensor data based head movement detection methods have been introduced by researchers over the years. In order to generate inertial sensor data, various types of wearables are available for example wrist band, smart watch, head-mounted device, and so on. For this thesis, eSense — a representative earable device — that has built-in inertial sensor to generate gyroscope data is employed. This eSense device is a True Wireless Stereo (TWS) earbud. It is augmented with some key equipment such as a 6-axis inertial motion unit, a microphone, and dual mode Bluetooth (Bluetooth Classic and Bluetooth Low Energy). Features are extracted from gyroscope data collected via eSense device. Subsequently, four machine learning models — Random Forest (RF), Support Vector Machine (SVM), Naïve Bayes, and Perceptron — are applied aiming to detect head movement. The performance of these models is evaluated by four different evaluation metrics such as Accuracy, Precision, Recall, and F1 score. Result shows that machine learning models that have been applied in this thesis are able to detect head movement. Comparing the performance of all these machine learning models, Random Forest performs better than others, it is able to detect head movement with approximately 77% accuracy. The accuracy rate of other three models such as Support Vector Machine, Naïve Bayes, and Perceptron is close to each other, where these models detect head movement with about 42%, 40%, and 39% accuracy, respectively. Besides, the result of other evaluation metrics like Precision, Recall, and F1 score verifies that using these machine learning models, different head direction such as left, right, or straight can be detected

    Recent and upcoming BCI progress: overview, analysis, and recommendations

    Get PDF
    Brain–computer interfaces (BCIs) are finally moving out of the laboratory and beginning to gain acceptance in real-world situations. As BCIs gain attention with broader groups of users, including persons with different disabilities and healthy users, numerous practical questions gain importance. What are the most practical ways to detect and analyze brain activity in field settings? Which devices and applications are most useful for different people? How can we make BCIs more natural and sensitive, and how can BCI technologies improve usability? What are some general trends and issues, such as combining different BCIs or assessing and comparing performance? This book chapter provides an overview of the different sections of this book, providing a summary of how authors address these and other questions. We also present some predictions and recommendations that ensue from our experience from discussing these and other issues with our authors and other researchers and developers within the BCI community. We conclude that, although some directions are hard to predict, the field is definitely growing and changing rapidly, and will continue doing so in the next several years

    Robotic and Sensor Technologies for Mobility in Older People

    Get PDF
    Maintaining independent mobility is fundamental to independent living and to the quality of life of older people. Robotic and sensor technologies may offer a lot of potential and can make a significant difference in the lives of older people and to their primary caregivers. The aim of this study was to provide a presentation of the methods that are used up till now for analysis and evaluation of human mobility utilizing sensor technologies and to give the state of the art in robotic platforms for supporting older people with mobility limitations. The literature was reviewed and systematic reviews of cohort studies and other authoritative reports were identified. The selection criteria included (1) patients with age â\u89¥60 years; (2) patients with unstable gait, with or without recurrent falls; (3) patients with slow movements, short strides, and little trunk movement; (4) sensor technologies that are currently used for mobility evaluation; and (5) robotic technologies that can serve as a supporting companion for older people with mobility limitations. One hundred eighty-one studies published up until February 2017 were identified, of which 36 were included. Two categories of research were identified from the review regarding the robot and sensor technologies: (1) sensor technologies for mobility analysis and (2) robots for supporting older people with mobility limitations. Potential for robotic and sensor technologies can be taken advantage of for evaluation and support at home for elder persons with mobility limitations in an automated way without the need of the physical presence of any medical personnel, reducing the stress of caregivers

    Assistive Technology and Biomechatronics Engineering

    Get PDF
    This Special Issue will focus on assistive technology (AT) to address biomechanical and control of movement issues in individuals with impaired health, whether as a result of disability, disease, or injury. All over the world, technologies are developed that make human life richer and more comfortable. However, there are people who are not able to benefit from these technologies. Research can include development of new assistive technology to promote more effective movement, the use of existing technology to assess and treat movement disorders, the use and effectiveness of virtual rehabilitation, or theoretical issues, such as modeling, which underlie the biomechanics or motor control of movement disorders. This Special Issue will also cover Internet of Things (IoT) sensing technology and nursing care robot applications that can be applied to new assistive technologies. IoT includes data, more specifically gathering them efficiently and using them to enable intelligence, control, and new applications

    Framework of controlling 3d virtual human emotional walking using BCI

    Get PDF
    A Brain-Computer Interface (BCI) is the device that can read and acquire the brain activities. A human body is controlled by Brain-Signals, which considered as a main controller. Furthermore, the human emotions and thoughts will be translated by brain through brain signals and expressed as human mood. This controlling process mainly performed through brain signals, the brain signals is a key component in electroencephalogram (EEG). Based on signal processing the features representing human mood (behavior) could be extracted with emotion as a major feature. This paper proposes a new framework in order to recognize the human inner emotions that have been conducted on the basis of EEG signals using a BCI device controller. This framework go through five steps starting by classifying the brain signal after reading it in order to obtain the emotion, then map the emotion, synchronize the animation of the 3D virtual human, test and evaluate the work. Based on our best knowledge there is no framework for controlling the 3D virtual human. As a result for implementing our framework will enhance the game field of enhancing and controlling the 3D virtual humans’ emotion walking in order to enhance and bring more realistic as well. Commercial games and Augmented Reality systems are possible beneficiaries of this technique. © 2015 Penerbit UTM Press. All rights reserved

    The smart house for older persons and persons with physical disabilities: structure, technology arrangements, and perspectives

    Full text link

    Proceedings of the 1st European conference on disability, virtual reality and associated technologies (ECDVRAT 1996)

    Get PDF
    The proceedings of the conferenc
    • …
    corecore