530 research outputs found

    Methods for speaking style conversion from normal speech to high vocal effort speech

    Get PDF
    This thesis deals with vocal-effort-focused speaking style conversion (SSC). Specifically, we studied two topics on conversion of normal speech to high vocal effort. The first topic involves the conversion of normal speech to shouted speech. We employed this conversion in a speaker recognition system with vocal effort mismatch between test and enrollment utterances (shouted speech vs. normal speech). The mismatch causes a degradation of the system's speaker identification performance. As solution, we proposed a SSC system that included a novel spectral mapping, used along a statistical mapping technique, to transform the mel-frequency spectral energies of normal speech enrollment utterances towards their counterparts in shouted speech. We evaluated the proposed solution by comparing speaker identification rates for a state-of-the-art i-vector-based speaker recognition system, with and without applying SSC to the enrollment utterances. Our results showed that applying the proposed SSC pre-processing to the enrollment data improves considerably the speaker identification rates. The second topic involves a normal-to-Lombard speech conversion. We proposed a vocoder-based parametric SSC system to perform the conversion. This system first extracts speech features using the vocoder. Next, a mapping technique, robust to data scarcity, maps the features. Finally, the vocoder synthesizes the mapped features into speech. We used two vocoders in the conversion system, for comparison: a glottal vocoder and the widely used STRAIGHT. We assessed the converted speech from the two vocoder cases with two subjective listening tests that measured similarity to Lombard speech and naturalness. The similarity subjective test showed that, for both vocoder cases, our proposed SSC system was able to convert normal speech to Lombard speech. The naturalness subjective test showed that the converted samples using the glottal vocoder were clearly more natural than those obtained with STRAIGHT

    Anonymizing Speech: Evaluating and Designing Speaker Anonymization Techniques

    Full text link
    The growing use of voice user interfaces has led to a surge in the collection and storage of speech data. While data collection allows for the development of efficient tools powering most speech services, it also poses serious privacy issues for users as centralized storage makes private personal speech data vulnerable to cyber threats. With the increasing use of voice-based digital assistants like Amazon's Alexa, Google's Home, and Apple's Siri, and with the increasing ease with which personal speech data can be collected, the risk of malicious use of voice-cloning and speaker/gender/pathological/etc. recognition has increased. This thesis proposes solutions for anonymizing speech and evaluating the degree of the anonymization. In this work, anonymization refers to making personal speech data unlinkable to an identity while maintaining the usefulness (utility) of the speech signal (e.g., access to linguistic content). We start by identifying several challenges that evaluation protocols need to consider to evaluate the degree of privacy protection properly. We clarify how anonymization systems must be configured for evaluation purposes and highlight that many practical deployment configurations do not permit privacy evaluation. Furthermore, we study and examine the most common voice conversion-based anonymization system and identify its weak points before suggesting new methods to overcome some limitations. We isolate all components of the anonymization system to evaluate the degree of speaker PPI associated with each of them. Then, we propose several transformation methods for each component to reduce as much as possible speaker PPI while maintaining utility. We promote anonymization algorithms based on quantization-based transformation as an alternative to the most-used and well-known noise-based approach. Finally, we endeavor a new attack method to invert anonymization.Comment: PhD Thesis Pierre Champion | Universit\'e de Lorraine - INRIA Nancy | for associated source code, see https://github.com/deep-privacy/SA-toolki

    Enhanced multiclass SVM with thresholding fusion for speech-based emotion classification

    Get PDF
    As an essential approach to understanding human interactions, emotion classification is a vital component of behavioral studies as well as being important in the design of context-aware systems. Recent studies have shown that speech contains rich information about emotion, and numerous speech-based emotion classification methods have been proposed. However, the classification performance is still short of what is desired for the algorithms to be used in real systems. We present an emotion classification system using several one-against-all support vector machines with a thresholding fusion mechanism to combine the individual outputs, which provides the functionality to effectively increase the emotion classification accuracy at the expense of rejecting some samples as unclassified. Results show that the proposed system outperforms three state-of-the-art methods and that the thresholding fusion mechanism can effectively improve the emotion classification, which is important for applications that require very high accuracy but do not require that all samples be classified. We evaluate the system performance for several challenging scenarios including speaker-independent tests, tests on noisy speech signals, and tests using non-professional acted recordings, in order to demonstrate the performance of the system and the effectiveness of the thresholding fusion mechanism in real scenarios.Peer ReviewedPreprin
    corecore