470 research outputs found

    Learning Grimaces by Watching TV

    Full text link
    Differently from computer vision systems which require explicit supervision, humans can learn facial expressions by observing people in their environment. In this paper, we look at how similar capabilities could be developed in machine vision. As a starting point, we consider the problem of relating facial expressions to objectively measurable events occurring in videos. In particular, we consider a gameshow in which contestants play to win significant sums of money. We extract events affecting the game and corresponding facial expressions objectively and automatically from the videos, obtaining large quantities of labelled data for our study. We also develop, using benchmarks such as FER and SFEW 2.0, state-of-the-art deep neural networks for facial expression recognition, showing that pre-training on face verification data can be highly beneficial for this task. Then, we extend these models to use facial expressions to predict events in videos and learn nameable expressions from them. The dataset and emotion recognition models are available at http://www.robots.ox.ac.uk/~vgg/data/facevalueComment: British Machine Vision Conference (BMVC) 201

    MicroExpNet: An Extremely Small and Fast Model For Expression Recognition From Face Images

    Get PDF
    This paper is aimed at creating extremely small and fast convolutional neural networks (CNN) for the problem of facial expression recognition (FER) from frontal face images. To this end, we employed the popular knowledge distillation (KD) method and identified two major shortcomings with its use: 1) a fine-grained grid search is needed for tuning the temperature hyperparameter and 2) to find the optimal size-accuracy balance, one needs to search for the final network size (or the compression rate). On the other hand, KD is proved to be useful for model compression for the FER problem, and we discovered that its effects gets more and more significant with the decreasing model size. In addition, we hypothesized that translation invariance achieved using max-pooling layers would not be useful for the FER problem as the expressions are sensitive to small, pixel-wise changes around the eye and the mouth. However, we have found an intriguing improvement on generalization when max-pooling is used. We conducted experiments on two widely-used FER datasets, CK+ and Oulu-CASIA. Our smallest model (MicroExpNet), obtained using knowledge distillation, is less than 1MB in size and works at 1851 frames per second on an Intel i7 CPU. Despite being less accurate than the state-of-the-art, MicroExpNet still provides significant insights for designing a microarchitecture for the FER problem.Comment: International Conference on Image Processing Theory, Tools and Applications (IPTA) 2019 camera ready version. Codes are available at: https://github.com/cuguilke/microexpne

    Automatic Analysis of Facial Expressions Based on Deep Covariance Trajectories

    Get PDF
    In this paper, we propose a new approach for facial expression recognition using deep covariance descriptors. The solution is based on the idea of encoding local and global Deep Convolutional Neural Network (DCNN) features extracted from still images, in compact local and global covariance descriptors. The space geometry of the covariance matrices is that of Symmetric Positive Definite (SPD) matrices. By conducting the classification of static facial expressions using Support Vector Machine (SVM) with a valid Gaussian kernel on the SPD manifold, we show that deep covariance descriptors are more effective than the standard classification with fully connected layers and softmax. Besides, we propose a completely new and original solution to model the temporal dynamic of facial expressions as deep trajectories on the SPD manifold. As an extension of the classification pipeline of covariance descriptors, we apply SVM with valid positive definite kernels derived from global alignment for deep covariance trajectories classification. By performing extensive experiments on the Oulu-CASIA, CK+, and SFEW datasets, we show that both the proposed static and dynamic approaches achieve state-of-the-art performance for facial expression recognition outperforming many recent approaches.Comment: A preliminary version of this work appeared in "Otberdout N, Kacem A, Daoudi M, Ballihi L, Berretti S. Deep Covariance Descriptors for Facial Expression Recognition, in British Machine Vision Conference 2018, BMVC 2018, Northumbria University, Newcastle, UK, September 3-6, 2018. ; 2018 :159." arXiv admin note: substantial text overlap with arXiv:1805.0386
    corecore