5,004 research outputs found

    Feature extraction based on bio-inspired model for robust emotion recognition

    Get PDF
    Emotional state identification is an important issue to achieve more natural speech interactive systems. Ideally, these systems should also be able to work in real environments in which generally exist some kind of noise. Several bio-inspired representations have been applied to artificial systems for speech processing under noise conditions. In this work, an auditory signal representation is used to obtain a novel bio-inspired set of features for emotional speech signals. These characteristics, together with other spectral and prosodic features, are used for emotion recognition under noise conditions. Neural models were trained as classifiers and results were compared to the well-known mel-frequency cepstral coefficients. Results show that using the proposed representations, it is possible to significantly improve the robustness of an emotion recognition system. The results were also validated in a speaker independent scheme and with two emotional speech corpora.Fil: Albornoz, Enrique Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentin

    Cross-Corpus Multilingual Speech Emotion Recognition: Amharic vs. Other Languages

    Full text link
    In a conventional Speech emotion recognition (SER) task, a classifier for a given language is trained on a pre-existing dataset for that same language. However, where training data for a language does not exist, data from other languages can be used instead. We experiment with cross-lingual and multilingual SER, working with Amharic, English, German and URDU. For Amharic, we use our own publicly-available Amharic Speech Emotion Dataset (ASED). For English, German and Urdu we use the existing RAVDESS, EMO-DB and URDU datasets. We followed previous research in mapping labels for all datasets to just two classes, positive and negative. Thus we can compare performance on different languages directly, and combine languages for training and testing. In Experiment 1, monolingual SER trials were carried out using three classifiers, AlexNet, VGGE (a proposed variant of VGG), and ResNet50. Results averaged for the three models were very similar for ASED and RAVDESS, suggesting that Amharic and English SER are equally difficult. Similarly, German SER is more difficult, and Urdu SER is easier. In Experiment 2, we trained on one language and tested on another, in both directions for each pair: AmharicGerman, AmharicEnglish, and AmharicUrdu. Results with Amharic as target suggested that using English or German as source will give the best result. In Experiment 3, we trained on several non-Amharic languages and then tested on Amharic. The best accuracy obtained was several percent greater than the best accuracy in Experiment 2, suggesting that a better result can be obtained when using two or three non-Amharic languages for training than when using just one non-Amharic language. Overall, the results suggest that cross-lingual and multilingual training can be an effective strategy for training a SER classifier when resources for a language are scarce.Comment: 16 pages, 9 tables, 5 figure

    Unsupervised Adversarial Domain Adaptation for Cross-Lingual Speech Emotion Recognition

    Full text link
    Cross-lingual speech emotion recognition (SER) is a crucial task for many real-world applications. The performance of SER systems is often degraded by the differences in the distributions of training and test data. These differences become more apparent when training and test data belong to different languages, which cause a significant performance gap between the validation and test scores. It is imperative to build more robust models that can fit in practical applications of SER systems. Therefore, in this paper, we propose a Generative Adversarial Network (GAN)-based model for multilingual SER. Our choice of using GAN is motivated by their great success in learning the underlying data distribution. The proposed model is designed in such a way that can learn language invariant representations without requiring target-language data labels. We evaluate our proposed model on four different language emotional datasets, including an Urdu-language dataset to also incorporate alternative languages for which labelled data is difficult to find and which have not been studied much by the mainstream community. Our results show that our proposed model can significantly improve the baseline cross-lingual SER performance for all the considered datasets including the non-mainstream Urdu language data without requiring any labels.Comment: Accepted in Affective Computing & Intelligent Interaction (ACII 2019

    Survey on encode biometric data for transmission in wireless communication networks

    Get PDF
    The aim of this research survey is to review an enhanced model supported by artificial intelligence to encode biometric data for transmission in wireless communication networks can be tricky as performance decreases with increasing size due to interference, especially if channels and network topology are not selected carefully beforehand. Additionally, network dissociations may occur easily if crucial links fail as redundancy is neglected for signal transmission. Therefore, we present several algorithms and its implementation which addresses this problem by finding a network topology and channel assignment that minimizes interference and thus allows a deployment to increase its throughput performance by utilizing more bandwidth in the local spectrum by reducing coverage as well as connectivity issues in multiple AI-based techniques. Our evaluation survey shows an increase in throughput performance of up to multiple times or more compared to a baseline scenario where an optimization has not taken place and only one channel for the whole network is used with AI-based techniques. Furthermore, our solution also provides a robust signal transmission which tackles the issue of network partition for coverage and for single link failures by using airborne wireless network. The highest end-to-end connectivity stands at 10 Mbps data rate with a maximum propagation distance of several kilometers. The transmission in wireless network coverage depicted with several signal transmission data rate with 10 Mbps as it has lowest coverage issue with moderate range of propagation distance using enhanced model to encode biometric data for transmission in wireless communication

    Exploiting Group Structures to Infer Social Interactions From Videos

    Get PDF
    In this thesis, we consider the task of inferring the social interactions between humans by analyzing multi-modal data. Specifically, we attempt to solve some of the problems in interaction analysis, such as long-term deception detection, political deception detection, and impression prediction. In this work, we emphasize the importance of using knowledge about the group structure of the analyzed interactions. Previous works on the matter mostly neglected this aspect and analyzed a single subject at a time. Using the new Resistance dataset, collected by our collaborators, we approach the problem of long-term deception detection by designing a class of histogram-based features and a novel class of meta-features we callLiarRank. We develop a LiarOrNot model to identify spies in Resistance videos. We achieve AUCs of over 0.70 outperforming our baselines by 3% and human judges by 12%. For the problem of political deception, we first collect a dataset of videos and transcripts of 76 politicians from 18 countries making truthful and deceptive statements. We call it the Global Political Deception Dataset. We then show how to analyze the statements in a broader context by building a Video-Article-Topic graph. From this graph, we create a novel class of features called Deception Score that captures how controversial each topic is and how it affects the truthfulness of each statement. We show that our approach achieves 0.775 AUC outperforming competing baselines. Finally, we use the Resistance data to solve the problem of dyadic impression prediction. Our proposed Dyadic Impression Prediction System (DIPS) contains four major innovations: a novel class of features called emotion ranks, sign imbalance features derived from signed graphs theory, a novel method to align the facial expressions of subjects, and finally, we propose the concept of a multilayered stochastic network we call Temporal Delayed Network. Our DIPS architecture beats eight baselines from the literature, yielding statistically significant improvements of 19.9-30.8% in AUC

    Application of Common Sense Computing for the Development of a Novel Knowledge-Based Opinion Mining Engine

    Get PDF
    The ways people express their opinions and sentiments have radically changed in the past few years thanks to the advent of social networks, web communities, blogs, wikis and other online collaborative media. The distillation of knowledge from this huge amount of unstructured information can be a key factor for marketers who want to create an image or identity in the minds of their customers for their product, brand, or organisation. These online social data, however, remain hardly accessible to computers, as they are specifically meant for human consumption. The automatic analysis of online opinions, in fact, involves a deep understanding of natural language text by machines, from which we are still very far. Hitherto, online information retrieval has been mainly based on algorithms relying on the textual representation of web-pages. Such algorithms are very good at retrieving texts, splitting them into parts, checking the spelling and counting their words. But when it comes to interpreting sentences and extracting meaningful information, their capabilities are known to be very limited. Existing approaches to opinion mining and sentiment analysis, in particular, can be grouped into three main categories: keyword spotting, in which text is classified into categories based on the presence of fairly unambiguous affect words; lexical affinity, which assigns arbitrary words a probabilistic affinity for a particular emotion; statistical methods, which calculate the valence of affective keywords and word co-occurrence frequencies on the base of a large training corpus. Early works aimed to classify entire documents as containing overall positive or negative polarity, or rating scores of reviews. Such systems were mainly based on supervised approaches relying on manually labelled samples, such as movie or product reviews where the opinionist’s overall positive or negative attitude was explicitly indicated. However, opinions and sentiments do not occur only at document level, nor they are limited to a single valence or target. Contrary or complementary attitudes toward the same topic or multiple topics can be present across the span of a document. In more recent works, text analysis granularity has been taken down to segment and sentence level, e.g., by using presence of opinion-bearing lexical items (single words or n-grams) to detect subjective sentences, or by exploiting association rule mining for a feature-based analysis of product reviews. These approaches, however, are still far from being able to infer the cognitive and affective information associated with natural language as they mainly rely on knowledge bases that are still too limited to efficiently process text at sentence level. In this thesis, common sense computing techniques are further developed and applied to bridge the semantic gap between word-level natural language data and the concept-level opinions conveyed by these. In particular, the ensemble application of graph mining and multi-dimensionality reduction techniques on two common sense knowledge bases was exploited to develop a novel intelligent engine for open-domain opinion mining and sentiment analysis. The proposed approach, termed sentic computing, performs a clause-level semantic analysis of text, which allows the inference of both the conceptual and emotional information associated with natural language opinions and, hence, a more efficient passage from (unstructured) textual information to (structured) machine-processable data. The engine was tested on three different resources, namely a Twitter hashtag repository, a LiveJournal database and a PatientOpinion dataset, and its performance compared both with results obtained using standard sentiment analysis techniques and using different state-of-the-art knowledge bases such as Princeton’s WordNet, MIT’s ConceptNet and Microsoft’s Probase. Differently from most currently available opinion mining services, the developed engine does not base its analysis on a limited set of affect words and their co-occurrence frequencies, but rather on common sense concepts and the cognitive and affective valence conveyed by these. This allows the engine to be domain-independent and, hence, to be embedded in any opinion mining system for the development of intelligent applications in multiple fields such as Social Web, HCI and e-health. Looking ahead, the combined novel use of different knowledge bases and of common sense reasoning techniques for opinion mining proposed in this work, will, eventually, pave the way for development of more bio-inspired approaches to the design of natural language processing systems capable of handling knowledge, retrieving it when necessary, making analogies and learning from experience

    Application of Common Sense Computing for the Development of a Novel Knowledge-Based Opinion Mining Engine

    Get PDF
    The ways people express their opinions and sentiments have radically changed in the past few years thanks to the advent of social networks, web communities, blogs, wikis and other online collaborative media. The distillation of knowledge from this huge amount of unstructured information can be a key factor for marketers who want to create an image or identity in the minds of their customers for their product, brand, or organisation. These online social data, however, remain hardly accessible to computers, as they are specifically meant for human consumption. The automatic analysis of online opinions, in fact, involves a deep understanding of natural language text by machines, from which we are still very far. Hitherto, online information retrieval has been mainly based on algorithms relying on the textual representation of web-pages. Such algorithms are very good at retrieving texts, splitting them into parts, checking the spelling and counting their words. But when it comes to interpreting sentences and extracting meaningful information, their capabilities are known to be very limited. Existing approaches to opinion mining and sentiment analysis, in particular, can be grouped into three main categories: keyword spotting, in which text is classified into categories based on the presence of fairly unambiguous affect words; lexical affinity, which assigns arbitrary words a probabilistic affinity for a particular emotion; statistical methods, which calculate the valence of affective keywords and word co-occurrence frequencies on the base of a large training corpus. Early works aimed to classify entire documents as containing overall positive or negative polarity, or rating scores of reviews. Such systems were mainly based on supervised approaches relying on manually labelled samples, such as movie or product reviews where the opinionist’s overall positive or negative attitude was explicitly indicated. However, opinions and sentiments do not occur only at document level, nor they are limited to a single valence or target. Contrary or complementary attitudes toward the same topic or multiple topics can be present across the span of a document. In more recent works, text analysis granularity has been taken down to segment and sentence level, e.g., by using presence of opinion-bearing lexical items (single words or n-grams) to detect subjective sentences, or by exploiting association rule mining for a feature-based analysis of product reviews. These approaches, however, are still far from being able to infer the cognitive and affective information associated with natural language as they mainly rely on knowledge bases that are still too limited to efficiently process text at sentence level. In this thesis, common sense computing techniques are further developed and applied to bridge the semantic gap between word-level natural language data and the concept-level opinions conveyed by these. In particular, the ensemble application of graph mining and multi-dimensionality reduction techniques on two common sense knowledge bases was exploited to develop a novel intelligent engine for open-domain opinion mining and sentiment analysis. The proposed approach, termed sentic computing, performs a clause-level semantic analysis of text, which allows the inference of both the conceptual and emotional information associated with natural language opinions and, hence, a more efficient passage from (unstructured) textual information to (structured) machine-processable data. The engine was tested on three different resources, namely a Twitter hashtag repository, a LiveJournal database and a PatientOpinion dataset, and its performance compared both with results obtained using standard sentiment analysis techniques and using different state-of-the-art knowledge bases such as Princeton’s WordNet, MIT’s ConceptNet and Microsoft’s Probase. Differently from most currently available opinion mining services, the developed engine does not base its analysis on a limited set of affect words and their co-occurrence frequencies, but rather on common sense concepts and the cognitive and affective valence conveyed by these. This allows the engine to be domain-independent and, hence, to be embedded in any opinion mining system for the development of intelligent applications in multiple fields such as Social Web, HCI and e-health. Looking ahead, the combined novel use of different knowledge bases and of common sense reasoning techniques for opinion mining proposed in this work, will, eventually, pave the way for development of more bio-inspired approaches to the design of natural language processing systems capable of handling knowledge, retrieving it when necessary, making analogies and learning from experience
    • …
    corecore