3,997 research outputs found

    Proposing a hybrid approach for emotion classification using audio and video data

    Get PDF
    Emotion recognition has been a research topic in the field of Human-Computer Interaction (HCI) during recent years. Computers have become an inseparable part of human life. Users need human-like interaction to better communicate with computers. Many researchers have become interested in emotion recognition and classification using different sources. A hybrid approach of audio and text has been recently introduced. All such approaches have been done to raise the accuracy and appropriateness of emotion classification. In this study, a hybrid approach of audio and video has been applied for emotion recognition. The innovation of this approach is selecting the characteristics of audio and video and their features as a unique specification for classification. In this research, the SVM method has been used for classifying the data in the SAVEE database. The experimental results show the maximum classification accuracy for audio data is 91.63% while by applying the hybrid approach the accuracy achieved is 99.26%

    Multimodal Affect Recognition: Current Approaches and Challenges

    Get PDF
    Many factors render multimodal affect recognition approaches appealing. First, humans employ a multimodal approach in emotion recognition. It is only fitting that machines, which attempt to reproduce elements of the human emotional intelligence, employ the same approach. Second, the combination of multiple-affective signals not only provides a richer collection of data but also helps alleviate the effects of uncertainty in the raw signals. Lastly, they potentially afford us the flexibility to classify emotions even when one or more source signals are not possible to retrieve. However, the multimodal approach presents challenges pertaining to the fusion of individual signals, dimensionality of the feature space, and incompatibility of collected signals in terms of time resolution and format. In this chapter, we explore the aforementioned challenges while presenting the latest scholarship on the topic. Hence, we first discuss the various modalities used in affect classification. Second, we explore the fusion of modalities. Third, we present publicly accessible multimodal datasets designed to expedite work on the topic by eliminating the laborious task of dataset collection. Fourth, we analyze representative works on the topic. Finally, we summarize the current challenges in the field and provide ideas for future research directions

    Feature extraction based on bio-inspired model for robust emotion recognition

    Get PDF
    Emotional state identification is an important issue to achieve more natural speech interactive systems. Ideally, these systems should also be able to work in real environments in which generally exist some kind of noise. Several bio-inspired representations have been applied to artificial systems for speech processing under noise conditions. In this work, an auditory signal representation is used to obtain a novel bio-inspired set of features for emotional speech signals. These characteristics, together with other spectral and prosodic features, are used for emotion recognition under noise conditions. Neural models were trained as classifiers and results were compared to the well-known mel-frequency cepstral coefficients. Results show that using the proposed representations, it is possible to significantly improve the robustness of an emotion recognition system. The results were also validated in a speaker independent scheme and with two emotional speech corpora.Fil: Albornoz, Enrique Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentin

    Emotional Expression Detection in Spoken Language Employing Machine Learning Algorithms

    Full text link
    There are a variety of features of the human voice that can be classified as pitch, timbre, loudness, and vocal tone. It is observed in numerous incidents that human expresses their feelings using different vocal qualities when they are speaking. The primary objective of this research is to recognize different emotions of human beings such as anger, sadness, fear, neutrality, disgust, pleasant surprise, and happiness by using several MATLAB functions namely, spectral descriptors, periodicity, and harmonicity. To accomplish the work, we analyze the CREMA-D (Crowd-sourced Emotional Multimodal Actors Data) & TESS (Toronto Emotional Speech Set) datasets of human speech. The audio file contains data that have various characteristics (e.g., noisy, speedy, slow) thereby the efficiency of the ML (Machine Learning) models increases significantly. The EMD (Empirical Mode Decomposition) is utilized for the process of signal decomposition. Then, the features are extracted through the use of several techniques such as the MFCC, GTCC, spectral centroid, roll-off point, entropy, spread, flux, harmonic ratio, energy, skewness, flatness, and audio delta. The data is trained using some renowned ML models namely, Support Vector Machine, Neural Network, Ensemble, and KNN. The algorithms show an accuracy of 67.7%, 63.3%, 61.6%, and 59.0% respectively for the test data and 77.7%, 76.1%, 99.1%, and 61.2% for the training data. We have conducted experiments using Matlab and the result shows that our model is very prominent and flexible than existing similar works.Comment: Journal Pre-print (15 Pages, 9 Figures, 3 Tables
    • …
    corecore