14,694 research outputs found

    Emotion Interaction With Virtual Reality Using Hybrid Emotion Classification Technique Toward Brain Signals

    Get PDF
    Human computer interaction (HCI) considered main aspect in virtual reality (VR) especially in the context of emotion, where users can interact with virtual reality through their emotions and it could be expressed in virtual reality. Last decade many researchers focused on emotion classification in order to employ emotion in interaction with virtual reality, the classification will be done based on Electroencephalogram (EEG) brain signals. This paper provides a new hybrid emotion classification method by combining self- assessment, arousal valence dimension and variance of brain hemisphere activity to classify users’ emotions. Self-assessment considered a standard technique used for assessing emotion, arousal valence emotion dimension model is an emotion classifier with regards to aroused emotions and brain hemisphere activity that classifies emotion with regards to right and left hemisphere. This method can classify human emotions, two basic emotions is highlighted i.e. happy and sad. EEG brain signals are used to interpret the users’ emotional. Emotion interaction is expressed by 3D model walking expression in VR. The results show that the hybrid method classifies the highlighted emotions in different circumstances, and how the 3D model changes its walking style according to the classified users’ emotions. Finally, the outcome is believed to afford new technique on classifying emotions with feedback through 3D virtual model walking expression

    Optimal set of EEG features for emotional state classification and trajectory visualization in Parkinson's disease

    Get PDF
    In addition to classic motor signs and symptoms, individuals with Parkinson's disease (PD) are characterized by emotional deficits. Ongoing brain activity can be recorded by electroencephalograph (EEG) to discover the links between emotional states and brain activity. This study utilized machine-learning algorithms to categorize emotional states in PD patients compared with healthy controls (HC) using EEG. Twenty non-demented PD patients and 20 healthy age-, gender-, and education level-matched controls viewed happiness, sadness, fear, anger, surprise, and disgust emotional stimuli while fourteen-channel EEG was being recorded. Multimodal stimulus (combination of audio and visual) was used to evoke the emotions. To classify the EEG-based emotional states and visualize the changes of emotional states over time, this paper compares four kinds of EEG features for emotional state classification and proposes an approach to track the trajectory of emotion changes with manifold learning. From the experimental results using our EEG data set, we found that (a) bispectrum feature is superior to other three kinds of features, namely power spectrum, wavelet packet and nonlinear dynamical analysis; (b) higher frequency bands (alpha, beta and gamma) play a more important role in emotion activities than lower frequency bands (delta and theta) in both groups and; (c) the trajectory of emotion changes can be visualized by reducing subject-independent features with manifold learning. This provides a promising way of implementing visualization of patient's emotional state in real time and leads to a practical system for noninvasive assessment of the emotional impairments associated with neurological disorders

    Detection of emotions in Parkinson's disease using higher order spectral features from brain's electrical activity

    Get PDF
    Non-motor symptoms in Parkinson's disease (PD) involving cognition and emotion have been progressively receiving more attention in recent times. Electroencephalogram (EEG) signals, being an activity of central nervous system, can reflect the underlying true emotional state of a person. This paper presents a computational framework for classifying PD patients compared to healthy controls (HC) using emotional information from the brain's electrical activity

    Emotional Brain-Computer Interfaces

    Get PDF
    Research in Brain-computer interface (BCI) has significantly increased during the last few years. In addition to their initial role as assisting devices for the physically challenged, BCIs are now proposed for a wider range of applications. As in any HCI application, BCIs can also benefit from adapting their operation to the emotional state of the user. BCIs have the advantage of having access to brain activity which can provide signicant insight into the user's emotional state. This information can be utilized in two manners. 1) Knowledge of the inuence of the emotional state on brain activity patterns can allow the BCI to adapt its recognition algorithms, so that the intention of the user is still correctly interpreted in spite of signal deviations induced by the subject's emotional state. 2) The ability to recognize emotions can be used in BCIs to provide the user with more natural ways of controlling the BCI through affective modulation. Thus, controlling a BCI by recollecting a pleasant memory can be possible and can potentially lead to higher information transfer rates.\ud These two approaches of emotion utilization in BCI are elaborated in detail in this paper in the framework of noninvasive EEG based BCIs

    Emotion classification in Parkinson's disease by higher-order spectra and power spectrum features using EEG signals: A comparative study

    Get PDF
    Deficits in the ability to process emotions characterize several neuropsychiatric disorders and are traits of Parkinson's disease (PD), and there is need for a method of quantifying emotion, which is currently performed by clinical diagnosis. Electroencephalogram (EEG) signals, being an activity of central nervous system (CNS), can reflect the underlying true emotional state of a person. This study applied machine-learning algorithms to categorize EEG emotional states in PD patients that would classify six basic emotions (happiness and sadness, fear, anger, surprise and disgust) in comparison with healthy controls (HC). Emotional EEG data were recorded from 20 PD patients and 20 healthy age-, education level- and sex-matched controls using multimodal (audio-visual) stimuli. The use of nonlinear features motivated by the higher-order spectra (HOS) has been reported to be a promising approach to classify the emotional states. In this work, we made the comparative study of the performance of k-nearest neighbor (kNN) and support vector machine (SVM) classifiers using the features derived from HOS and from the power spectrum. Analysis of variance (ANOVA) showed that power spectrum and HOS based features were statistically significant among the six emotional states (p < 0.0001). Classification results shows that using the selected HOS based features instead of power spectrum based features provided comparatively better accuracy for all the six classes with an overall accuracy of 70.10% ± 2.83% and 77.29% ± 1.73% for PD patients and HC in beta (13-30 Hz) band using SVM classifier. Besides, PD patients achieved less accuracy in the processing of negative emotions (sadness, fear, anger and disgust) than in processing of positive emotions (happiness, surprise) compared with HC. These results demonstrate the effectiveness of applying machine learning techniques to the classification of emotional states in PD patients in a user independent manner using EEG signals. The accuracy of the system can be improved by investigating the other HOS based features. This study might lead to a practical system for noninvasive assessment of the emotional impairments associated with neurological disorders

    On the analysis of EEG power, frequency and asymmetry in Parkinson's disease during emotion processing

    Get PDF
    Objective: While Parkinson’s disease (PD) has traditionally been described as a movement disorder, there is growing evidence of disruption in emotion information processing associated with the disease. The aim of this study was to investigate whether there are specific electroencephalographic (EEG) characteristics that discriminate PD patients and normal controls during emotion information processing. Method: EEG recordings from 14 scalp sites were collected from 20 PD patients and 30 age-matched normal controls. Multimodal (audio-visual) stimuli were presented to evoke specific targeted emotional states such as happiness, sadness, fear, anger, surprise and disgust. Absolute and relative power, frequency and asymmetry measures derived from spectrally analyzed EEGs were subjected to repeated ANOVA measures for group comparisons as well as to discriminate function analysis to examine their utility as classification indices. In addition, subjective ratings were obtained for the used emotional stimuli. Results: Behaviorally, PD patients showed no impairments in emotion recognition as measured by subjective ratings. Compared with normal controls, PD patients evidenced smaller overall relative delta, theta, alpha and beta power, and at bilateral anterior regions smaller absolute theta, alpha, and beta power and higher mean total spectrum frequency across different emotional states. Inter-hemispheric theta, alpha, and beta power asymmetry index differences were noted, with controls exhibiting greater right than left hemisphere activation. Whereas intra-hemispheric alpha power asymmetry reduction was exhibited in patients bilaterally at all regions. Discriminant analysis correctly classified 95.0% of the patients and controls during emotional stimuli. Conclusion: These distributed spectral powers in different frequency bands might provide meaningful information about emotional processing in PD patients
    corecore