5,252 research outputs found

    Transmission Delay of Multi-hop Heterogeneous Networks for Medical Applications

    Full text link
    Nowadays, with increase in ageing population, Health care market keeps growing. There is a need for monitoring of Health issues. Body Area Network consists of wireless sensors attached on or inside human body for monitoring vital Health related problems e.g, Electro Cardiogram (ECG), ElectroEncephalogram (EEG), ElectronyStagmography(ENG) etc. Data is recorded by sensors and is sent towards Health care center. Due to life threatening situations, timely sending of data is essential. For data to reach Health care center, there must be a proper way of sending data through reliable connection and with minimum delay. In this paper transmission delay of different paths, through which data is sent from sensor to Health care center over heterogeneous multi-hop wireless channel is analyzed. Data of medical related diseases is sent through three different paths. In all three paths, data from sensors first reaches ZigBee, which is the common link in all three paths. After ZigBee there are three available networks, through which data is sent. Wireless Local Area Network (WLAN), Worldwide Interoperability for Microwave Access (WiMAX), Universal Mobile Telecommunication System (UMTS) are connected with ZigBee. Each network (WLAN, WiMAX, UMTS) is setup according to environmental conditions, suitability of device and availability of structure for that device. Data from these networks is sent to IP-Cloud, which is further connected to Health care center. Main aim of this paper is to calculate delay of each link in each path over multihop wireless channel.Comment: BioSPAN with 7th IEEE International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA 2012), Victoria, Canada, 201

    Path Loss Modeling of WLAN and WiMAX Systems

    Get PDF
    With the advancement in technology, there was need for efficient and high speed internet through which we could have access to multiple networks as per the user requirement. WLAN met this need to some extent but, due to its low range it was not recommended commercially. With the introduction of WiMAX there was an emerging need to select the best network amongst WiMAX or WLAN depending upon the user location. Pathloss with respect to these particular networks also needs to be compared. In this paper we compare the pathloss modelling for WiMAX and WLAN systems. Different Models have been compared with each other to know which model performs better by keeping same simulation environment. Path Loss models used for WLAN are Okumura, Hata, Cost-231 and Free Space Path Loss whereas models used for WiMAX are Free Space Path Loss, Okumura-Hata, Cost231-Hata and Stanford University Interim. In case of WiMAX three different scenarios Urban, Sub-Urban and Rural is considered where as in case of WLAN only outdoor environment is considered. With the Path Loss comparison, power received for these two technologies; WiMAX, and WLAN is also simulated. MATLAB is the tool used for simulations. Antenna Specifications for WiMAX and WLAN is kept same for all simulation environments
    • …
    corecore