221 research outputs found

    Vehicular Platoon Communication: Cybersecurity Threats and Open Challenges

    Get PDF

    Analysis of cyber risk and associated concentration of research (ACR)² in the security of vehicular edge clouds

    Get PDF
    Intelligent Transportation Systems (ITS) is a rapidly growing research space with many issues and challenges. One of the major concerns is to successfully integrate connected technologies, such as cloud infrastructure and edge cloud, into ITS. Security has been identified as one of the greatest challenges for the ITS, and security measures require consideration from design to implementation. This work focuses on providing an analysis of cyber risk and associated concentration of research (ACR2). The introduction of ACR2 approach can be used to consider research challenges in VEC and open up further investigation into those threats that are important but under-researched. That is, the approach can identify very high or high risk areas that have a low research concentration. In this way, this research can lay the foundations for the development of further work in securing the future of ITS

    Attacks on self-driving cars and their countermeasures : a survey

    Get PDF
    Intelligent Traffic Systems (ITS) are currently evolving in the form of a cooperative ITS or connected vehicles. Both forms use the data communications between Vehicle-To-Vehicle (V2V), Vehicle-To-Infrastructure (V2I/I2V) and other on-road entities, and are accelerating the adoption of self-driving cars. The development of cyber-physical systems containing advanced sensors, sub-systems, and smart driving assistance applications over the past decade is equipping unmanned aerial and road vehicles with autonomous decision-making capabilities. The level of autonomy depends upon the make-up and degree of sensor sophistication and the vehicle's operational applications. As a result, self-driving cars are being compromised perceived as a serious threat. Therefore, analyzing the threats and attacks on self-driving cars and ITSs, and their corresponding countermeasures to reduce those threats and attacks are needed. For this reason, some survey papers compiling potential attacks on VANETs, ITSs and self-driving cars, and their detection mechanisms are available in the current literature. However, up to our knowledge, they have not covered the real attacks already happened in self-driving cars. To bridge this research gap, in this paper, we analyze the attacks that already targeted self-driving cars and extensively present potential cyber-Attacks and their impacts on those cars along with their vulnerabilities. For recently reported attacks, we describe the possible mitigation strategies taken by the manufacturers and governments. This survey includes recent works on how a self-driving car can ensure resilient operation even under ongoing cyber-Attack. We also provide further research directions to improve the security issues associated with self-driving cars. © 2013 IEEE

    A comprehensive survey of V2X cybersecurity mechanisms and future research paths

    Get PDF
    Recent advancements in vehicle-to-everything (V2X) communication have notably improved existing transport systems by enabling increased connectivity and driving autonomy levels. The remarkable benefits of V2X connectivity come inadvertently with challenges which involve security vulnerabilities and breaches. Addressing security concerns is essential for seamless and safe operation of mission-critical V2X use cases. This paper surveys current literature on V2X security and provides a systematic and comprehensive review of the most relevant security enhancements to date. An in-depth classification of V2X attacks is first performed according to key security and privacy requirements. Our methodology resumes with a taxonomy of security mechanisms based on their proactive/reactive defensive approach, which helps identify strengths and limitations of state-of-the-art countermeasures for V2X attacks. In addition, this paper delves into the potential of emerging security approaches leveraging artificial intelligence tools to meet security objectives. Promising data-driven solutions tailored to tackle security, privacy and trust issues are thoroughly discussed along with new threat vectors introduced inevitably by these enablers. The lessons learned from the detailed review of existing works are also compiled and highlighted. We conclude this survey with a structured synthesis of open challenges and future research directions to foster contributions in this prominent field.This work is supported by the H2020-INSPIRE-5Gplus project (under Grant agreement No. 871808), the ”Ministerio de Asuntos Económicos y Transformacion Digital” and the European Union-NextGenerationEU in the frameworks of the ”Plan de Recuperación, Transformación y Resiliencia” and of the ”Mecanismo de Recuperación y Resiliencia” under references TSI-063000-2021-39/40/41, and the CHIST-ERA-17-BDSI-003 FIREMAN project funded by the Spanish National Foundation (Grant PCI2019-103780).Peer ReviewedPostprint (published version

    Security Improvements for Connected Vehicles Position-Based Routing

    Get PDF
    The constant growing on the number of vehicles is increasing the complexity of traffic in urban and highway environments. It is paramount to improve traffic management to guarantee better road usage and people’s safety. Through efficient communications, Vehicular Ad hoc Networks (VANETs) can provide enough information for traffic safety initiatives, daily traffic data processing, and entertainment information. However, VANETs are vulnerable to malicious nodes applying different types of net-work attacks, where an attacker can, for instance, forge its position to receive the data packet and drop the message. This can lead vehicles and authorities to make incorrect assumptions and decisions, which can result in dangerous situations. Therefore, any data dissemination protocol designed for VANET should consider security issues when selecting the next-hop forwarding node. In this paper, we propose a security scheme designed for position-based routing algorithms, which analyzes nodes position, transmission range, and hello packet interval. The scheme deals with malicious nodes performing network attacks, faking their positions forcing packets to be dropped. We used the Simulation of Urban MObility (SUMO) and Network Simulator-version 3 (NS-3) to compare our proposed scheme integrated with two well-known position-based algorithms. The results were collected in an urban Manhattan grid environment varying the number of nodes, the number of malicious nodes, as well as the number of source-destination pairs. The results show that the proposed security scheme can successfully improve the packet delivery ratio while maintaining low average end-to-end delay of the algorithms.

    Effect of Cyber Vulnerabilities on the Adoption of Self-Driving Vehicles – A Review

    Get PDF
    One of the leading disruptive technologies in the upcoming technological revolution is Self-Driving vehicles. However, the absence of security is the greatest obstacle to adoption. This study looks at how cybersecurity impacts the adoption of driverless cars. The purpose of this paper is to perform a literature review supporting the in-depth analysis of cybersecurity and its impacts on the slower adoption rate of Self-Driving Vehicles. The study\u27s primary goal is to determine the connection between worries about cybersecurity and the rate of adoption of self-driving vehicles. Driverless vehicles are the most effective and cutting-edge technology in the transportation sector, yet there are barriers to their widespread adoption because of cybersecurity worries. As a result, this study will clarify the cybersecurity issues that contributed to the slower deployment of autonomous vehicles. The NIST Cybersecurity Framework serves as the study\u27s theoretical foundation. This paradigm consistently identifies the barriers to new technology adoption in cybersecurity
    corecore