80,531 research outputs found

    Latent Space Model for Multi-Modal Social Data

    Full text link
    With the emergence of social networking services, researchers enjoy the increasing availability of large-scale heterogenous datasets capturing online user interactions and behaviors. Traditional analysis of techno-social systems data has focused mainly on describing either the dynamics of social interactions, or the attributes and behaviors of the users. However, overwhelming empirical evidence suggests that the two dimensions affect one another, and therefore they should be jointly modeled and analyzed in a multi-modal framework. The benefits of such an approach include the ability to build better predictive models, leveraging social network information as well as user behavioral signals. To this purpose, here we propose the Constrained Latent Space Model (CLSM), a generalized framework that combines Mixed Membership Stochastic Blockmodels (MMSB) and Latent Dirichlet Allocation (LDA) incorporating a constraint that forces the latent space to concurrently describe the multiple data modalities. We derive an efficient inference algorithm based on Variational Expectation Maximization that has a computational cost linear in the size of the network, thus making it feasible to analyze massive social datasets. We validate the proposed framework on two problems: prediction of social interactions from user attributes and behaviors, and behavior prediction exploiting network information. We perform experiments with a variety of multi-modal social systems, spanning location-based social networks (Gowalla), social media services (Instagram, Orkut), e-commerce and review sites (Amazon, Ciao), and finally citation networks (Cora). The results indicate significant improvement in prediction accuracy over state of the art methods, and demonstrate the flexibility of the proposed approach for addressing a variety of different learning problems commonly occurring with multi-modal social data.Comment: 12 pages, 7 figures, 2 table

    Predicting Successful Memes using Network and Community Structure

    Full text link
    We investigate the predictability of successful memes using their early spreading patterns in the underlying social networks. We propose and analyze a comprehensive set of features and develop an accurate model to predict future popularity of a meme given its early spreading patterns. Our paper provides the first comprehensive comparison of existing predictive frameworks. We categorize our features into three groups: influence of early adopters, community concentration, and characteristics of adoption time series. We find that features based on community structure are the most powerful predictors of future success. We also find that early popularity of a meme is not a good predictor of its future popularity, contrary to common belief. Our methods outperform other approaches, particularly in the task of detecting very popular or unpopular memes.Comment: 10 pages, 6 figures, 2 tables. Proceedings of 8th AAAI Intl. Conf. on Weblogs and social media (ICWSM 2014

    Measuring, Predicting and Visualizing Short-Term Change in Word Representation and Usage in VKontakte Social Network

    Full text link
    Language in social media is extremely dynamic: new words emerge, trend and disappear, while the meaning of existing words can fluctuate over time. Such dynamics are especially notable during a period of crisis. This work addresses several important tasks of measuring, visualizing and predicting short term text representation shift, i.e. the change in a word's contextual semantics, and contrasting such shift with surface level word dynamics, or concept drift, observed in social media streams. Unlike previous approaches on learning word representations from text, we study the relationship between short-term concept drift and representation shift on a large social media corpus - VKontakte posts in Russian collected during the Russia-Ukraine crisis in 2014-2015. Our novel contributions include quantitative and qualitative approaches to (1) measure short-term representation shift and contrast it with surface level concept drift; (2) build predictive models to forecast short-term shifts in meaning from previous meaning as well as from concept drift; and (3) visualize short-term representation shift for example keywords to demonstrate the practical use of our approach to discover and track meaning of newly emerging terms in social media. We show that short-term representation shift can be accurately predicted up to several weeks in advance. Our unique approach to modeling and visualizing word representation shifts in social media can be used to explore and characterize specific aspects of the streaming corpus during crisis events and potentially improve other downstream classification tasks including real-time event detection
    • …
    corecore