137 research outputs found

    Connecting Spiking Neurons to a Spiking Memristor Network Changes the Memristor Dynamics

    Full text link
    Memristors have been suggested as neuromorphic computing elements. Spike-time dependent plasticity and the Hodgkin-Huxley model of the neuron have both been modelled effectively by memristor theory. The d.c. response of the memristor is a current spike. Based on these three facts we suggest that memristors are well-placed to interface directly with neurons. In this paper we show that connecting a spiking memristor network to spiking neuronal cells causes a change in the memristor network dynamics by: removing the memristor spikes, which we show is due to the effects of connection to aqueous medium; causing a change in current decay rate consistent with a change in memristor state; presenting more-linear I−tI-t dynamics; and increasing the memristor spiking rate, as a consequence of interaction with the spiking neurons. This demonstrates that neurons are capable of communicating directly with memristors, without the need for computer translation.Comment: Conference paper, 4 page

    Memristor Neural Network Design

    Get PDF
    Neural network, a powerful learning model, has archived amazing results. However, the current Von Neumann computing system–based implementations of neural networks are suffering from memory wall and communication bottleneck problems ascribing to the Complementary Metal Oxide Semiconductor (CMOS) technology scaling down and communication gap. Memristor, a two terminal nanosolid state nonvolatile resistive switching, can provide energy‐efficient neuromorphic computing with its synaptic behavior. Crossbar architecture can be used to perform neural computations because of its high density and parallel computation. Thus, neural networks based on memristor crossbar will perform better in real world applications. In this chapter, the design of different neural network architectures based on memristor is introduced, including spiking neural networks, multilayer neural networks, convolution neural networks, and recurrent neural networks. And the brief introduction, the architecture, the computing circuits, and the training algorithm of each kind of neural networks are presented by instances. The potential applications and the prospects of memristor‐based neural network system are discussed
    • 

    corecore