13,562 research outputs found

    The genotype-phenotype relationship in multicellular pattern-generating models - the neglected role of pattern descriptors

    Get PDF
    Background: A deep understanding of what causes the phenotypic variation arising from biological patterning processes, cannot be claimed before we are able to recreate this variation by mathematical models capable of generating genotype-phenotype maps in a causally cohesive way. However, the concept of pattern in a multicellular context implies that what matters is not the state of every single cell, but certain emergent qualities of the total cell aggregate. Thus, in order to set up a genotype-phenotype map in such a spatiotemporal pattern setting one is actually forced to establish new pattern descriptors and derive their relations to parameters of the original model. A pattern descriptor is a variable that describes and quantifies a certain qualitative feature of the pattern, for example the degree to which certain macroscopic structures are present. There is today no general procedure for how to relate a set of patterns and their characteristic features to the functional relationships, parameter values and initial values of an original pattern-generating model. Here we present a new, generic approach for explorative analysis of complex patterning models which focuses on the essential pattern features and their relations to the model parameters. The approach is illustrated on an existing model for Delta-Notch lateral inhibition over a two-dimensional lattice. Results: By combining computer simulations according to a succession of statistical experimental designs, computer graphics, automatic image analysis, human sensory descriptive analysis and multivariate data modelling, we derive a pattern descriptor model of those macroscopic, emergent aspects of the patterns that we consider of interest. The pattern descriptor model relates the values of the new, dedicated pattern descriptors to the parameter values of the original model, for example by predicting the parameter values leading to particular patterns, and provides insights that would have been hard to obtain by traditional methods. Conclusion: The results suggest that our approach may qualify as a general procedure for how to discover and relate relevant features and characteristics of emergent patterns to the functional relationships, parameter values and initial values of an underlying pattern-generating mathematical model

    A Self-Organizing Neural System for Learning to Recognize Textured Scenes

    Full text link
    A self-organizing ARTEX model is developed to categorize and classify textured image regions. ARTEX specializes the FACADE model of how the visual cortex sees, and the ART model of how temporal and prefrontal cortices interact with the hippocampal system to learn visual recognition categories and their names. FACADE processing generates a vector of boundary and surface properties, notably texture and brightness properties, by utilizing multi-scale filtering, competition, and diffusive filling-in. Its context-sensitive local measures of textured scenes can be used to recognize scenic properties that gradually change across space, as well a.s abrupt texture boundaries. ART incrementally learns recognition categories that classify FACADE output vectors, class names of these categories, and their probabilities. Top-down expectations within ART encode learned prototypes that pay attention to expected visual features. When novel visual information creates a poor match with the best existing category prototype, a memory search selects a new category with which classify the novel data. ARTEX is compared with psychophysical data, and is benchmarked on classification of natural textures and synthetic aperture radar images. It outperforms state-of-the-art systems that use rule-based, backpropagation, and K-nearest neighbor classifiers.Defense Advanced Research Projects Agency; Office of Naval Research (N00014-95-1-0409, N00014-95-1-0657

    Design-task Linkages in Digital Innovation: Software Platforms at Globalcarcorp

    Get PDF
    The adoption of software platforms in product design can be challenging for manufacturing firms. In particular, embedded linkages between the organization design (task) and product design (design) may counteract attempts to induce more agile and flexible innovation processes. Yet, little research has investigated the influence of software platforms on design-task linkages in digital innovation. This paper addresses this research problem by examining the use of software platforms for instrument cluster design at a global automaker. Drawing on innovation theory, we identify and explicate two types of tensions emerging when digitizing physical products. Related to temporality and design hierarchy, these tensions form the basis for a set of implications for the literatures on platforms and digital innovation

    "Going back to our roots": second generation biocomputing

    Full text link
    Researchers in the field of biocomputing have, for many years, successfully "harvested and exploited" the natural world for inspiration in developing systems that are robust, adaptable and capable of generating novel and even "creative" solutions to human-defined problems. However, in this position paper we argue that the time has now come for a reassessment of how we exploit biology to generate new computational systems. Previous solutions (the "first generation" of biocomputing techniques), whilst reasonably effective, are crude analogues of actual biological systems. We believe that a new, inherently inter-disciplinary approach is needed for the development of the emerging "second generation" of bio-inspired methods. This new modus operandi will require much closer interaction between the engineering and life sciences communities, as well as a bidirectional flow of concepts, applications and expertise. We support our argument by examining, in this new light, three existing areas of biocomputing (genetic programming, artificial immune systems and evolvable hardware), as well as an emerging area (natural genetic engineering) which may provide useful pointers as to the way forward.Comment: Submitted to the International Journal of Unconventional Computin

    Proceedings of the ECCS 2005 satellite workshop: embracing complexity in design - Paris 17 November 2005

    Get PDF
    Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr). Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr)
    • …
    corecore