23,431 research outputs found

    Impact of Mobile and Wireless Technology on Healthcare Delivery services

    Get PDF
    Modern healthcare delivery services embrace the use of leading edge technologies and new scientific discoveries to enable better cures for diseases and better means to enable early detection of most life-threatening diseases. The healthcare industry is finding itself in a state of turbulence and flux. The major innovations lie with the use of information technologies and particularly, the adoption of mobile and wireless applications in healthcare delivery [1]. Wireless devices are becoming increasingly popular across the healthcare field, enabling caregivers to review patient records and test results, enter diagnosis information during patient visits and consult drug formularies, all without the need for a wired network connection [2]. A pioneering medical-grade, wireless infrastructure supports complete mobility throughout the full continuum of healthcare delivery. It facilitates the accurate collection and the immediate dissemination of patient information to physicians and other healthcare care professionals at the time of clinical decision-making, thereby ensuring timely, safe, and effective patient care. This paper investigates the wireless technologies that can be used for medical applications, and the effectiveness of such wireless solutions in a healthcare environment. It discusses challenges encountered; and concludes by providing recommendations on policies and standards for the use of such technologies within hospitals

    A Priority-based Fair Queuing (PFQ) Model for Wireless Healthcare System

    Get PDF
    Healthcare is a very active research area, primarily due to the increase in the elderly population that leads to increasing number of emergency situations that require urgent actions. In recent years some of wireless networked medical devices were equipped with different sensors to measure and report on vital signs of patient remotely. The most important sensors are Heart Beat Rate (ECG), Pressure and Glucose sensors. However, the strict requirements and real-time nature of medical applications dictate the extreme importance and need for appropriate Quality of Service (QoS), fast and accurate delivery of a patient’s measurements in reliable e-Health ecosystem. As the elderly age and older adult population is increasing (65 years and above) due to the advancement in medicine and medical care in the last two decades; high QoS and reliable e-health ecosystem has become a major challenge in Healthcare especially for patients who require continuous monitoring and attention. Nevertheless, predictions have indicated that elderly population will be approximately 2 billion in developing countries by 2050 where availability of medical staff shall be unable to cope with this growth and emergency cases that need immediate intervention. On the other side, limitations in communication networks capacity, congestions and the humongous increase of devices, applications and IOT using the available communication networks add extra layer of challenges on E-health ecosystem such as time constraints, quality of measurements and signals reaching healthcare centres. Hence this research has tackled the delay and jitter parameters in E-health M2M wireless communication and succeeded in reducing them in comparison to current available models. The novelty of this research has succeeded in developing a new Priority Queuing model ‘’Priority Based-Fair Queuing’’ (PFQ) where a new priority level and concept of ‘’Patient’s Health Record’’ (PHR) has been developed and integrated with the Priority Parameters (PP) values of each sensor to add a second level of priority. The results and data analysis performed on the PFQ model under different scenarios simulating real M2M E-health environment have revealed that the PFQ has outperformed the results obtained from simulating the widely used current models such as First in First Out (FIFO) and Weight Fair Queuing (WFQ). PFQ model has improved transmission of ECG sensor data by decreasing delay and jitter in emergency cases by 83.32% and 75.88% respectively in comparison to FIFO and 46.65% and 60.13% with respect to WFQ model. Similarly, in pressure sensor the improvements were 82.41% and 71.5% and 68.43% and 73.36% in comparison to FIFO and WFQ respectively. Data transmission were also improved in the Glucose sensor by 80.85% and 64.7% and 92.1% and 83.17% in comparison to FIFO and WFQ respectively. However, non-emergency cases data transmission using PFQ model was negatively impacted and scored higher rates than FIFO and WFQ since PFQ tends to give higher priority to emergency cases. Thus, a derivative from the PFQ model has been developed to create a new version namely “Priority Based-Fair Queuing-Tolerated Delay” (PFQ-TD) to balance the data transmission between emergency and non-emergency cases where tolerated delay in emergency cases has been considered. PFQ-TD has succeeded in balancing fairly this issue and reducing the total average delay and jitter of emergency and non-emergency cases in all sensors and keep them within the acceptable allowable standards. PFQ-TD has improved the overall average delay and jitter in emergency and non-emergency cases among all sensors by 41% and 84% respectively in comparison to PFQ model

    Towards transnational interoperable PPDR communications: the European ISI cloud network

    Get PDF
    The European Council has been stressing the need for interoperability among technologies used for Public Protection and Disaster Relief (PPDR) communications across Europe for a long time. Nevertheless, while the introduction of TETRA and TETRAPOL technologies in the last two decades has increased the possibility to talk cross agency internally in a country, cross border communication for the public safety forces is not well solved as of today. This paper describes the communications interoperability solution that is being developed in the framework of the ISITEP project. This solution, referred to as the European Inter-System Interface (ISI) Cloud Network, aims to integrate the PPDR national/regional infrastructures to allow migration (i.e., roaming) and communication services between networks within a secure framework. The ISI Cloud Network involves, among other components, the specification of a new ISI interface to be deployed over IP transport networks and the development of a number of different gateways to cover the use of TETRA and TETRAPOL technologies as well as the use of legacy TETRA ISI by some networks.Peer ReviewedPostprint (author's final draft

    An Integrated Framework for Sensing Radio Frequency Spectrum Attacks on Medical Delivery Drones

    Full text link
    Drone susceptibility to jamming or spoofing attacks of GPS, RF, Wi-Fi, and operator signals presents a danger to future medical delivery systems. A detection framework capable of sensing attacks on drones could provide the capability for active responses. The identification of interference attacks has applicability in medical delivery, disaster zone relief, and FAA enforcement against illegal jamming activities. A gap exists in the literature for solo or swarm-based drones to identify radio frequency spectrum attacks. Any non-delivery specific function, such as attack sensing, added to a drone involves a weight increase and additional complexity; therefore, the value must exceed the disadvantages. Medical delivery, high-value cargo, and disaster zone applications could present a value proposition which overcomes the additional costs. The paper examines types of attacks against drones and describes a framework for designing an attack detection system with active response capabilities for improving the reliability of delivery and other medical applications.Comment: 7 pages, 1 figures, 5 table

    A feasibility study for the provision of electronic healthcare tools and services in areas of Greece, Cyprus and Italy

    Get PDF
    Background: Through this paper, we present the initial steps for the creation of an integrated platform for the provision of a series of eHealth tools and services to both citizens and travelers in isolated areas of thesoutheast Mediterranean, and on board ships travelling across it. The platform was created through an INTERREG IIIB ARCHIMED project called INTERMED. Methods: The support of primary healthcare, home care and the continuous education of physicians are the three major issues that the proposed platform is trying to facilitate. The proposed system is based on state-of-the-art telemedicine systems and is able to provide the following healthcare services: i) Telecollaboration and teleconsultation services between remotely located healthcare providers, ii) telemedicine services in emergencies, iii) home telecare services for "at risk" citizens such as the elderly and patients with chronic diseases, and iv) eLearning services for the continuous training through seminars of both healthcare personnel (physicians, nurses etc) and persons supporting "at risk" citizens. These systems support data transmission over simple phone lines, internet connections, integrated services digital network/digital subscriber lines, satellite links, mobile networks (GPRS/3G), and wireless local area networks. The data corresponds, among others, to voice, vital biosignals, still medical images, video, and data used by eLearning applications. The proposed platform comprises several systems, each supporting different services. These were integrated using a common data storage and exchange scheme in order to achieve system interoperability in terms of software, language and national characteristics. Results: The platform has been installed and evaluated in different rural and urban sites in Greece, Cyprus and Italy. The evaluation was mainly related to technical issues and user satisfaction. The selected sites are, among others, rural health centers, ambulances, homes of "at-risk" citizens, and a ferry. Conclusions: The results proved the functionality and utilization of the platform in various rural places in Greece, Cyprus and Italy. However, further actions are needed to enable the local healthcare systems and the different population groups to be familiarized with, and use in their everyday lives, mature technological solutions for the provision of healthcare services

    Warrnambool exchange fire: consumer and social impact analysis

    Get PDF
    How can governments, communities, businesses and individuals prepare for a total communications blackout in the 21st century? Overview This report presents the findings of a research project which assessed the social impact of the Warrnambool exchange fire. The fire occurred on November 22, 2012 and caused a telecommunications outage that lasted for about 20 days. The outage affected about 100,000 people in South West Victoria, a region of Australia covering approximately 67,340 square kilometers. The social impact of the fire was researched by conducting focus groups, by gathering quantitative and qualitative data, and interviewing people affected. The research project findings call for an understanding of the need for government, communities, business and individuals to be prepared for future “extreme events” which result in telecommunications network failures.   This research was supported by a grant from the Australian Communications Consumer Action Network

    Master of Science

    Get PDF
    thesisEmergency "911" service is a critical function provided in the Public Switched Telephone Network (PSTN), cellular and Voice over Internet Protocol (VoIP) networks. Wi-Fi, despite its growing importance, has no such service. In this thesis, we develop a 911-like service for Wi-Fi-capable devices, enabling them to send emergency messages through any available hotspot or access point. Our service makes use of existing 802.11 management frames and does not require the client device to associate or authenticate with the access point; this makes it available even on protected networks to which the client would not normally have access, even encrypted ones. This design ensures maximum potential reach and usability, and helps to increase public safety

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01
    • 

    corecore