46 research outputs found

    Virtual transshipments and revenue-sharing contracts in supply chain management

    Get PDF
    This dissertation presents the use of virtual transshipments and revenue-sharing contracts for inventory control in a small scale supply chain. The main objective is to maximize the total profit in a centralized supply chain or maximize the supply chain\u27s profit while keeping the individual components\u27 incentives in a decentralized supply chain. First, a centralized supply chain with two capacitated manufacturing plants situated in two distinct geographical regions is considered. Normally, demand in each region is mostly satisfied by the local plant. However, if the local plant is understocked while the remote one is overstocked, some of the newly generated demand can be assigned to be served by the more remote plant. The sources of the above virtual lateral transshipments, unlike the ones involved in real lateral transshipments, do not need to have nonnegative inventory levels throughout the transshipment process. Besides the theoretical analysis for this centralized supply chain, a computational study is conducted in detail to illustrate the ability of virtual lateral transshipments to reduce the total cost. The impacts of the parameters (unit holding cost, production cost, goodwill cost, etc.) on the cost savings that can be achieved by using the transshipment option are also assessed. Then, a supply chain with one supplier and one retailer is considered where a revenue-sharing contract is adopted. In this revenue-sharing contract, the retailer may obtain the product from the supplier at a less-than-production-cost price, but in exchange, the retailer must share the revenue with the supplier at a pre-set revenuesharing rate. The objective is to maximize the overall supply chain\u27s total profit while upholding the individual components\u27 incentives. A two-stage Stackelberg game is used for the analysis. In this game, one player is the leader and the other one is the follower. The analysis reveals that the party who keeps more than half of the revenue should also be the leader of the Stackelberg game. Furthermore, the adoption of a revenue-sharing contract in a supply chain with two suppliers and one retailer under a limited amount of available funds is analyzed. Using the revenue-sharing contract, the retailer pays a transfer cost rate of the production cost per unit when he obtains the items from the suppliers, and shares the revenue with the suppliers at a pre-set revenue-sharing rate. The two suppliers have different transfer cost rates and revenue-sharing rates. The retailer will earn more profit per unit with a higher transfer cost rate. How the retailer orders items from the two suppliers to maximize his expected profit under limited available funds is analyzed next. Conditions are shown under which the optimal way the retailer orders items from the two suppliers exists

    Inventory models with lateral transshipments : a review

    Get PDF
    Lateral transshipments within an inventory system are stock movements between locations of the same echelon. These transshipments can be conducted periodically at predetermined points in time to proactively redistribute stock, or they can be used reactively as a method of meeting demand which cannot be satised from stock on hand. The elements of an inventory system considered, e.g. size, cost structures and service level denition, all in uence the best method of transshipping. Models of many dierent systems have been considered. This paper provides a literature review which categorizes the research to date on lateral transshipments, so that these dierences can be understood and gaps within the literature can be identied

    Order fulfillment in online retailing : what goes where

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2005.Includes bibliographical references (p. 139-146).We present three problems motivated by order fulfillment in online retailing. First, we focus on one warehouse or fulfillment center. To optimize the storage space and labor, an e-tailer splits the warehouse into two regions with different storage densities. One is for picking customer orders and the other to hold a reserve stock that replenishes the picking area. Consequently, the warehouse is a two-stage serial system. We investigate an inventory system where demand is stochastic by minimizing the total expected inventory- related costs subject to a space constraint. We develop an approximate model for a periodic review, nested ordering policy. Furthermore, we extend the formulation to account for shipping delays and advance order information. We report on tests of the model with data from a major e-tailer. Second, we focus on the entire network of warehouses and customers. When a customer order occurs, the e-tailer assigns the order to one or more of its warehouses and/or drop- shippers, so as to minimize procurement and transportation costs, based on the available current information. However, this assignment is necessarily myopic as it cannot account for any subsequent customer orders or future inventory replenishments.(cont.) We examine the benefits from periodically re-evaluating these real-time assignments. We construct near- optimal heuristics for the re-assignment for a large set of customer orders by minimizing the total number of shipments. Finally, we present saving opportunities by testing the heuristics on order data from a major e-tailer. Third, we focus on the inventory allocation among warehouses for low-demand SKUs. A large e-tailer strategically stocks inventory for SKUs with low demand. The motivations are to provide a wide range of selections and faster customer fulfillment service. We assume the e-tailer has the technological capability to manage and control the inventory globally: all warehouses act as one to serve the global demand simultaneously. The e-tailer will utilize its entire inventory, regardless of location, to serve demand. Given we stock certain units of system inventory, we allocate inventory to warehouses by minimizing outbound transportation costs. We analyze a few simple cases and present a methodology for more general problems.by Ping Josephine Xu.Ph.D

    Multilocation Inventory Systems With Centralized Information.

    Get PDF
    The management of multi-echelon inventory systems has been both an important and challenging research area for many years. The rapid advance in information technology and the emphasis on integrated supply chain management have new implications for the successful operation of distribution systems. This research focuses on the study of some fundamental issues related to the operation of a multilocation inventory system with centralized information. First, we do a comparative analysis to evaluate the overall performance of individual versus centralized ordering policies for a multi-store distribution system where centralized information is available. This study integrates the existing research and clarifies one of the fundamental questions facing inventory managers today: whether or not ordering decisions should be centralized. Next, we consider a multi-store distribution system where emergency transshipments are permitted among these stores. Based on some simplifying assumptions, we develop an integrated model with a joint consideration of inventory and transshipment components. An approximately optimal (s, S) policy is obtained through a dynamic programming technique. This ordering policy is then compared with a simplified policy that assumes free and instantaneous transshipments. We also examine the relative performance of base stock policies for a centralized-ordering distribution system. Numerical studies are provided to give general guidelines for use of the policies

    Exploring risk pooling in hospitals to reduce demand and lead time uncertainty

    Get PDF
    Nearly every eighth German hospital faces an elevated risk of bankruptcy. An inappropriate use of inventory management practices is among the causes. Hospitals suffer from demand and lead time uncertainty, and the current COVID-19 pandemic worsened the plight. The popular business logistics concept of risk pooling has been shown to reduce these uncertainties in industry and trade, but has been neglected as a variability reduction method in healthcare operations research and practice. Based on a survey with 223 German hospitals, this study explores how ten risk pooling methods can be adapted and applied in the healthcare context to reduce economic losses while maintaining a given service level. The results suggest that in general risk pooling may improve the economic situation of hospitals and, in particular, inventory pooling, transshipments, and product substitution for medications and consumer goods are the most effective methods in the healthcare context, while form postponement may be unsuitable for hospitals due to the required efforts, delay in treatments, and liability issues. The application of risk pooling in healthcare requires willingness to exchange information and to cooperate, adequate IT infrastructure, compatibility, adherence to healthcare laws and regulations, and securing the immediate treatment of emergencies. Compared to manufacturing and trading companies, hospitals seem to currently neglect the variability reducing effect of risk pooling
    corecore