9,637 research outputs found

    Accident Analysis and Prevention: Course Notes 1987/88

    Get PDF
    This report consists of the notes from a series of lectures given by the authors for a course entitled Accident Analysis and Prevention. The course took place during the second term of a one year Masters degree course in Transport Planning and Engineering run by the Institute for Transport Studies and the Department of Civil Engineering at the University of Leeds. The course consisted of 18 lectures of which 16 are reported on in this document (the remaining two, on Human Factors, are not reported on in this document as no notes were provided). Each lecture represents one chapter of this document, except in two instances where two lectures are covered in one chapter (Chapters 10 and 14). The course first took place in 1988, and at the date of publication has been run for a second time. This report contains the notes for the initial version of the course. A number of changes were made in the content and emphasis of the course during its second run, mainly due to a change of personnel, with different ideas and experiences in the field of accident analysis and prevention. It is likely that each time the course is run, there will be significant changes, but that the notes provided in this document can be considered to contain a number of the core elements of any future version of the course

    Promoting Bicycle Commuter Safety, Research Report 11-08

    Get PDF
    We present an overview of the risks associated with cycling to emphasize the need for safety. We focus on the application of frameworks from social psychology to education, one of the 5 Es—engineering, education, enforcement, encouragement, and evaluation. We use the structure of the 5 Es to organize information with particular attention to engineering and education in the literature review. Engineering is essential because the infrastructure is vital to protecting cyclists. Education is emphasized since the central focus of the report is safety

    ITS implementation plan for the Gold Coast area

    Get PDF
    ITS needs to be used to reinforce the planned major changes to the road functional hierarchy in the District, namely: • the use of Southport-Burleigh Rd. (SBR) as the major regional corridor; • the removal of through traffic from the GCH; • the use of Oxley Dr./Olsen Av./Ross St./NBR as another major north-south by-pass; • the use of Smith St.; NSR/Queen St.; NBR and Reedy Creek Rd. – West Burleigh Road as the major east-west access corridors. There is a need to integrate the proposed ITS measures into the current related plans for the Pacific Motorway and into the overall traffic control strategies for the area as a whole. In addition, the staging of the proposed plan needs to take into account the planned DMR capital Works Program. An index representing the degree of priority to be attached to each network link was developed to assist in the phased implementation of ITS technologies over the next 5 years. 'ITS Index' is made up of five variables, namely: • Accident rate factor • AADT • Volume/Capacity ratio • Delay • % Commercial Vehicles The main components of the ITS plan are shown diagrammatically in Figure 1. The latter assumes that the high level of ITS implementation on the Pacific Motorway will be extended in time to the remainder of that Highway. To assist in the implementation of the road hierarchy system, a new static signage plan should be implemented. This plan needs to reinforce the changes by clearly assigning single road names to corridors and by placing new signs at appropriate locations. Capturing Traffic Data The following corridors should be equipped with automatic traffic monitoring capability in priority order: High Priority ? SBR corridor from Smith St. connection to Reedy Creek Rd. ? Smith St. from Pacific Highway to High St. ? GCH from Pacific Highway to North St. Medium Priority ? Nerang-Broadbeach Rd/Ross St. to Nerang-Southport Rd. ? Nerang-Southport Rd from Pacific Highway to SBR ? Nerang-Broadbeach Rd from Pacific Highway to SBR The Smith St. link from the Pacific Motorway to Olsen Ave. should be considered as a freeway for monitoring purposes. The GCH along the coastal strip needs to be treated as a local distributor rather than as the major corridor. As a result, the future traffic surveillance priority should be low. At least one permanent environmental (vehicle emissions) monitoring station should be set up as part of the ITS plan. The most appropriate site for such a station would seem to be on the SBR corridor at the vicinity of Hooker Blv. intersection. Pacific Highway The Pacific Motorway project will set the benchmark for freeway incident detection and traffic management in the State. The high level of ITS implementation on the Motorway section will create a significant gap in performance and expectation, relative to the remainder of the Highway. It is recommended that the southern sections of the Pacific Highway be equipped to the equivalent level of traffic data collection and surveillance as the newly upgraded Motorway section, under a staged program. Travel Time Savings The travel time benefits of the full implementation of ITS over the network are likely to be of the order of at least 5 percent of vehicle-hours travelled on the affected links. At a discount rate of 6 percent, the total present value of the gross travel time benefit over 10 years is of the order of $200 million

    Fully automated urban traffic system

    Get PDF
    The replacement of the driver with an automatic system which could perform the functions of guiding and routing a vehicle with a human's capability of responding to changing traffic demands was discussed. The problem was divided into four technological areas; guidance, routing, computing, and communications. It was determined that the latter three areas being developed independent of any need for fully automated urban traffic. A guidance system that would meet system requirements was not being developed but was technically feasible

    Traffic light control design approaches: a systematic literature review

    Get PDF
    To assess different approaches to traffic light control design, a systematic literature review was conducted, covering publications from 2006 to 2020. The review’s aim was to gather and examine all studies that looked at road traffic and congestion issues. As well, it aims to extract and analyze protruding techniques from selected research articles in order to provide researchers and practitioners with recommendations and solutions. The research approach has placed a strong emphasis on planning, performing the analysis, and reporting the results. According to the results of the study, there has yet to be developed a specific design that senses road traffic and provides intelligent solutions. Dynamic time intervals, learning capability, emergency priority management, and intelligent functionality are all missing from the conventional design approach. While learning skills in the adaptive self-organization strategy were missed. Nonetheless, the vast majority of intelligent design approach papers lacked intelligent fear tires and learning abilities

    ПРЕДПОСЫЛКИ ВНЕДЕРЕНИЯ ИНТЕЛЛЕКТУАЛЬНОЙ ТРАНСПОРТНОЙ СИСТЕМЫ ДЛЯ ГОРОДА ЯКУТСКА

    Get PDF
    Damage to human health and life, material damage caused to the economy due to accidents on highways is one of the most serious socio-economic problems. Currently, this issue is becoming especially acute due to the still low culture of road users, the increase in the number of cars and high public demand for ensuring the safety of all road users. One of the significant reasons for the high accident rate in the city is the existing disproportion between the development of the street road system and the growth of the vehicle fleet, which leads to worsening traffic conditions, congestion, increased delays and increased harmful emissions into the atmosphere, environmental degradation, and social discomfort. Obviously, the modern technical equipment and the state of the organization of traffic do not allow ensuring the safety of traffic entities, and the growing level of motorization of the population and the existing labor migration traffic create an enormous load on the street-road network of the city agglomeration. The above factors generally do not stimulate accelerated social reproduction and are expressed in negative consequences such as an increase in travel time, an increase in the number of vehicle stops, an increase in the loss of time for legal entities and individuals, accelerated wear of the road surface, increased fuel consumption, and environmental degradation. The article presents the results of an analysis of the existing traffic light regulation, statistics of traffic accidents, a sociological survey, shows the grouping of intersections by hazard and congestion criteria, and offers the option of covering intersections of the city of Yakutsk with an intelligent transport system. The factors of a negative impact on safety and traffic management are listed, the prerequisites for the introduction of an intelligent transport system in the territory of the city agglomeration of Yakutsk are identified.El daño a la salud humana y a la vida, el daño material causado a la economía debido a accidentes en las carreteras es uno de los problemas socioeconómicos más graves. Actualmente, este problema se está volviendo especialmente agudo debido a la baja cultura de los usuarios de la carretera, el aumento en el número de automóviles y la alta demanda pública para garantizar la seguridad de todos los usuarios de la carretera. Una de las razones importantes de la alta tasa de accidentes en la ciudad es la desproporción existente entre el desarrollo del sistema de carreteras y el crecimiento de la flota de vehículos, lo que conduce a un empeoramiento de las condiciones del tráfico, la congestión, el aumento de los retrasos y el aumento de las emisiones nocivas en el atmósfera, degradación ambiental e incomodidad social. Obviamente, el equipo técnico moderno y el estado de la organización del tráfico no permiten garantizar la seguridad de las entidades de tráfico, y el creciente nivel de motorización de la población y el tráfico de migración laboral existente crean una enorme carga en la red de calles y carreteras. La aglomeración de la ciudad. Los factores anteriores generalmente no estimulan la reproducción social acelerada y se expresan en consecuencias negativas, como un aumento en el número de paradas de vehículos, un aumento en la pérdida de tiempo para las personas jurídicas y las personas, el desgaste acelerado del superficie de la carretera, mayor consumo de combustible y degradación ambiental. El artículo presenta los resultados de un análisis de la regulación de semáforos existente, estadísticas de accidentes de tráfico, una encuesta sociológica, muestra la agrupación de intersecciones por criterios de peligro y congestión, y ofrece la opción de cubrir las intersecciones de la ciudad de Yakutsk con un dispositivo inteligente. sistema de transporte Se enumeran los factores de un impacto negativo en la seguridad y la gestión del tráfico, se identifican los requisitos previos para la introducción de un sistema de transporte inteligente en el territorio de la aglomeración de la ciudad de Yakutsk.Ущерб здоровью и жизни людей, материальный урон, наносимый экономике вследствие аварийности на автомобильных дорогах, является одной из серьезнейших социально-экономических проблем. В настоящее время данный вопрос приобретает особую остроту в связи со все еще невысокой культурой участников дорожного движения, ростом количества автомобилей и высоким общественным запросом в обеспечении безопасности всех участников дорожного движения. Одной из существенных причин высокого уровня аварийности в городе является сложившаяся диспропорция между развитием уличной дорожной системы и ростом автопарка, которое приводит к ухудшению условий движения, заторам, росту задержек и увеличению вредных выбросов в атмосферу, ухудшению экологической обстановки, социальному дискомфорту. Очевидно, что современная техническая оснащенность и состояние организации дорожного движения не позволяют обеспечить безопасность субъектов движения, а растущий уровень автомобилизации населения и существующий трудовой миграционный трафик создают колоссальную нагрузку на улично-дорожную сеть городской агломерации. Перечисленные факторы в целом не стимулируют ускоренное общественное воспроизводство и выражаются в таких негативных последствиях как, увеличение времени на поездки, рост количества остановок транспортных средств, рост потерь времени юридических и физических лиц, ускорение износа дорожного покрытия, увеличение расхода топлива, ухудшение экологической обстановки. В статье приведены результаты анализа существующего светофорного регулирования, статистики дорожно-транспортных происшествий, проведенного социологический опроса, показана группировка перекрестков по критериям опасности и загруженности, предложен вариант охвата перекрестков города Якутска интеллектуальной транспортной системой. Перечислены факторы негативного влияния на безопасность и организацию дорожного движения, выявлены предпосылки внедрения интеллектуальной транспортной системы на территории городской агломерации Якутска

    INTELLIGENTE TRANSPORT SYSTEMEN ITS EN VERKEERSVEILIGHEID

    Get PDF
    This report discusses Intelligent Transport Systems (ITS). This generic term is used for a broad range of information-, control- and electronic technology that can be integrated in the road infrastructure and the vehicles themselves, saving lives, time and money bymonitoring and managing traffic flows, reducing conges-tion, avoiding accidents, etc. Because this report was written in the scope of the Policy Research Centre Mobility & Public Works, track Traffic Safety, it focuses on ITS systems from the traffic safety point of view. Within the whole range of ITS systems, two categories can be distinguished: autonomous and cooperative systems. Autonomous systems are all forms of ITS which operate by itself, and do not depend on the cooperation with other vehicles or supporting infrastructure. Example applications are blind spot detection using radar, electronic stability control, dynamic traffic management using variable road signs, emergency call, etc. Cooperative systems are ITS systems based on communication and cooperation, both between vehicles as between vehicles and infrastructure. Example applications are alerting vehicles approaching a traffic jam, exchanging data regarding hazardous road conditions, extended electronic brake light, etc. In some cases, autonomous systems can evolve to autonomous cooperative systems. ISA (Intelligent Speed Adaptation) is an example of this: the dynamic aspect as well as communication with infrastructure (eg Traffic lights, Variable Message Sign (VMS)...) can provide additional road safety. This is the clear link between the two parts of this report. The many ITS applications are an indicator of the high expectations from the government, the academic world and the industry regarding the possibilities made possible by both categories of ITS systems. Therefore, the comprehensive discussion of both of them is the core of this report. The first part of the report covering the autonomous systems treats two aspects: 1. Overview of European projects related to mobility and in particular to road safety 2. Overview for guidelines for the evaluation of ITS projects. Out of the wide range of diverse (autonomous) ITS applications a selection is made; this selection is focused on E Safety Forum and PreVENT. Especially the PreVent research project is interesting because ITS-applications have led to a number of concrete demonstration vehicles that showed - in protected and unprotected surroundings- that these ITS-applications are already technically useful or could be developed into useful products. The component “guidelines for the evaluation of ITS projects” outlines that the government has to have specific evaluation tools if the government has the ambition of using ITS-applications for road safety. Two projects -guidelines for the evaluation of ITS projects- are examined; a third evaluation method is only mentioned because this description shows that a specific targeting of the government can be desirable : 1. TRACE describes the guidelines for the evaluation of ITS projects which are useful for the evaluation of specific ITS-applications. 2. FITS contains Finnish guidelines for the evaluation of ITS project; FIS is an adaptation of methods used for evaluation of transport projects. 3. The third evaluation method for the evaluation of ITS projects is developed in an ongoing European research project, eImpact. eImpact is important because, a specific consultation of stake holders shows that the social importance of some techniques is underestimated. These preliminary results show that an appropriate guiding role for the government could be important. In the second part of this document the cooperative systems are discussed in depth. These systems enable a large number of applications with an important social relevance, both on the level of the environment, mobility and traffic safety. Cooperative systems make it possible to warn drivers in time to avoid collisions (e.g. when approaching the tail of a traffic jam, or when a ghost driver is detected). Hazardous road conditions can be automatically communicated to other drivers (e.g. after the detection of black ice or an oil trail by the ESP). Navigation systems can receive detailed real-time up-dates about the current traffic situation and can take this into account when calculating their routes. When a traffic distortion occurs, traffic centers can immediately take action and can actively influence the way that the traffic will be diverted. Drivers can be notified well in advance about approaching emergency vehicles, and can be directed to yield way in a uniform manner. This is just a small selection from the large number of applications that are made possible because of cooperative ITS systems, but it is very obvious that these systems can make a significant positive contribution to traffic safety. In literature it is estimated that the decrease of accidents with injuries of fatalities will be between 20% and 50% . It is not suprising that ITS systems receive a lot of attention for the moment. On an international level, a number of standards are being established regarding this topic. The International Telecommunications Uniont (ITU), Institute for Electrical and Electronics Engineers (IEEE), International Organization for Standardization (ISO), Association of Radio Industries and Business (ARIB) and European committee for standardization (CEN) are currently defining standards that describe different aspects of ITS systems. One of the names that is mostly mentioned in literature is the ISO TC204/WG16 Communications Architecture for Land Mobile environment (CALM) standard. It describes a framework that enables transparent (both for the application and the user) continuous communication through different communication media. Besides the innumerable standardization activities, there is a great number of active research projects. On European level, the most important are the i2010 Intelligent Car Initiative, the eSafety Forum, and the COMeSafety, the CVIS, the SAFESPOT, the COOPERS and the SEVECOM project. The i2010 Intelligent Car Initiative is an European initiative with the goal to halve the number of traffic casualties by 2010. The eSafety Forum is an initiative of the European Commission, industry and other stakeholders and targets the acceleration of development and deployment of safety-related ITS systems. The COMeSafety project supports the eSafety Forum on the field of vehicle-to-vehicle and vehicle-to-infrastructure communication. In the CVIS project, attention is given to both technical and non-technical issues, with the main goal to develop the first free and open reference implementation of the CALM architecture. The SAFEST project investigates which data is important for safety applications, and with which algorithmsthis data can be extracted from vehicles and infrastructure. The COOPERS project mainly targets communication between vehicles and dedicated roadside infrastructure. Finally, the SEVECOM project researches security and privacy issues. Besides the European projects, research is also conducted in the United States of America (CICAS and VII projects) and in Japan (AHSRA, VICS, Smartway, internetITS). Besides standardization bodies and governmental organizations, also the industry has a considerable interest in ITS systems. In the scope of their ITS activities, a number of companies are united in national and international organizations. On an international level, the best known names are the Car 2 Car Communication Consortium, and Ertico. The C2C CC unites the large European car manufacturers, and focuses on the development of an open standard for vehicle-to-vehicle and vehicle-to-infrastructure communications based on the already well established IEEE 802.11 WLAN standard. Ertico is an European multi-sector, public/private partnership with the intended purpose of the development and introduction of ITS systems. On a national level, FlandersDrive and The Telematics Cluster / ITS Belgium are the best known organizations. Despite the worldwide activities regarding (cooperative) ITS systems, there still is no consensus about the wireless technology to be used in such systems. This can be put down to the fact that a large number of suitable technologies exist or are under development. Each technology has its specific advantages and disadvantages, but no single technology is the ideal solution for every ITS application. However, the different candidates can be classified in three distinct categories. The first group contains solutions for Dedicated Short Range Communication (DSRC), such as the WAVE technology. The second group is made up of several cellular communication networks providing coverage over wide areas. Examples are GPRS (data communication using the GSM network), UMTS (faster then GPRS), WiMAX (even faster then UMTS) and MBWA (similar to WiMAX). The third group consists of digital data broadcast technologies such as RDS (via the current FM radio transmissions, slow), DAB and DMB (via current digital radio transmissions, quicker) and DVB-H (via future digital television transmissions for mobiledevices, quickest). The previous makes it clear that ITS systems are a hot topic right now, and they receive a lot of attention from the academic world, the standardization bodies and the industry. Therefore, it seems like that it is just a matter of time before ITS systems will find their way into the daily live. Due to the large number of suitable technologies for the implementation of cooperative ITS systems, it is very hard to define which role the government has to play in these developments, and which are the next steps to take. These issues were addressed in reports produced by the i2010 Intelligent Car Initiative and the CVIS project. Their state of the art overview revealed that until now, no country has successfully deployed a fully operational ITS system yet. Seven EU countries are the furthest and are already in the deployment phase: Sweden, Germany, the Netherlands, the United Kingdom, Finland, Spain and France. These countries are trailed by eight countries which are in the promotion phase: Denmark, Greece, Italy, Austria, Belgium,Norway, the Czech Republic and Poland. Finally, the last ten countries find themselves in the start-up phase: Estonia, Lithuania, Latvia, Slovenia, Slovakia, Hungary, Portugal, Switzerland, Ireland and Luxembourg. These European reports produced by the i2010 Intelligent Car Initiative and the CVIS project have defined a few policy recommendations which are very relevant for the Belgian and Flemish government. The most important recommendations for the Flemish government are: • Support awareness: research revealed that civilians consider ITS applications useful, but they are not really willing to pay for this technology. Therefore, it is important to convince the general public of the usefulness and the importance of ITS systems. • Fill the gaps: Belgium is situated in the promotion phase. This means that it should focus at identifying the missing stakeholders, and coordinating national and regional ITS activities. Here it is important that the research activities are coordinated in a national and international context to allow transfer of knowledge from one study to the next, as well as the results to be comparable. • Develop a vision: in the scope of ITS systems policies have to be defined regarding a large number of issues. For instance there is the question if ITS users should be educated, meaning that the use of ITS systems should be the subject of the drivers license exam. How will the regulations be for the technical inspection of vehicles equipped with ITS technology? Will ITS systems be deployed on a voluntary base, or will they e.g. be obliged in every new car? Will the services be offered by private companies, by the public authorities, or by a combination of them? Which technology will be used to implement ITS systems? These are just a few of the many questions where the government will have to develop a point of view for. • Policy coordination: ITS systems are a policy subject on an international, national and regional level. It is very important that these policy organizations can collaborate in a coordinated manner. • Iterative approach to policy development: developing policies for this complex matter is not a simple task. This asks for an iterative approach, where policy decisions are continuously refined and adjusted
    corecore