28,035 research outputs found

    Coevolutionary games - a mini review

    Full text link
    Prevalence of cooperation within groups of selfish individuals is puzzling in that it contradicts with the basic premise of natural selection. Favoring players with higher fitness, the latter is key for understanding the challenges faced by cooperators when competing with defectors. Evolutionary game theory provides a competent theoretical framework for addressing the subtleties of cooperation in such situations, which are known as social dilemmas. Recent advances point towards the fact that the evolution of strategies alone may be insufficient to fully exploit the benefits offered by cooperative behavior. Indeed, while spatial structure and heterogeneity, for example, have been recognized as potent promoters of cooperation, coevolutionary rules can extend the potentials of such entities further, and even more importantly, lead to the understanding of their emergence. The introduction of coevolutionary rules to evolutionary games implies, that besides the evolution of strategies, another property may simultaneously be subject to evolution as well. Coevolutionary rules may affect the interaction network, the reproduction capability of players, their reputation, mobility or age. Here we review recent works on evolutionary games incorporating coevolutionary rules, as well as give a didactic description of potential pitfalls and misconceptions associated with the subject. In addition, we briefly outline directions for future research that we feel are promising, thereby particularly focusing on dynamical effects of coevolutionary rules on the evolution of cooperation, which are still widely open to research and thus hold promise of exciting new discoveries.Comment: 24 two-column pages, 10 figures; accepted for publication in BioSystem

    Evolutionary game theory: Temporal and spatial effects beyond replicator dynamics

    Get PDF
    Evolutionary game dynamics is one of the most fruitful frameworks for studying evolution in different disciplines, from Biology to Economics. Within this context, the approach of choice for many researchers is the so-called replicator equation, that describes mathematically the idea that those individuals performing better have more offspring and thus their frequency in the population grows. While very many interesting results have been obtained with this equation in the three decades elapsed since it was first proposed, it is important to realize the limits of its applicability. One particularly relevant issue in this respect is that of non-mean-field effects, that may arise from temporal fluctuations or from spatial correlations, both neglected in the replicator equation. This review discusses these temporal and spatial effects focusing on the non-trivial modifications they induce when compared to the outcome of replicator dynamics. Alongside this question, the hypothesis of linearity and its relation to the choice of the rule for strategy update is also analyzed. The discussion is presented in terms of the emergence of cooperation, as one of the current key problems in Biology and in other disciplines.Comment: Review, 48 pages, 26 figure

    Participation costs dismiss the advantage of heterogeneous networks in evolution of cooperation

    Get PDF
    Real social interactions occur on networks in which each individual is connected to some, but not all, of others. In social dilemma games with a fixed population size, heterogeneity in the number of contacts per player is known to promote evolution of cooperation. Under a common assumption of positively biased payoff structure, well-connected players earn much by playing frequently, and cooperation once adopted by well-connected players is unbeatable and spreads to others. However, maintaining a social contact can be costly, which would prevent local payoffs from being positively biased. In replicator-type evolutionary dynamics, it is shown that even a relatively small participation cost extinguishes the merit of heterogeneous networks in terms of cooperation. In this situation, more connected players earn less so that they are no longer spreaders of cooperation. Instead, those with fewer contacts win and guide the evolution. The participation cost, or the baseline payoff, is irrelevant in homogeneous populations but is essential for evolutionary games on heterogeneous networks.Comment: 4 figures + 3 supplementary figure

    Leaders should not be conformists in evolutionary social dilemmas

    Get PDF
    The most common assumption in evolutionary game theory is that players should adopt a strategy that warrants the highest payoff. However, recent studies indicate that the spatial selection for cooperation is enhanced if an appropriate fraction of the population chooses the most common rather than the most profitable strategy within the interaction range. Such conformity might be due to herding instincts or crowd behavior in humans and social animals. In a heterogeneous population where individuals differ in their degree, collective influence, or other traits, an unanswered question remains who should conform. Selecting conformists randomly is the simplest choice, but it is neither a realistic nor the optimal one. We show that, regardless of the source of heterogeneity and game parametrization, socially the most favorable outcomes emerge if the masses conform. On the other hand, forcing leaders to conform significantly hinders the constructive interplay between heterogeneity and coordination, leading to evolutionary outcomes that are worse still than if conformists were chosen randomly. We conclude that leaders must be able to create a following for network reciprocity to be optimally augmented by conformity. In the opposite case, when leaders are castrated and made to follow, the failure of coordination impairs the evolution of cooperation.Comment: 7 two-column pages, 4 figures; accepted for publication in Scientific Reports [related work available at arXiv:1412.4113

    Interdependent network reciprocity in evolutionary games

    Get PDF
    Besides the structure of interactions within networks, also the interactions between networks are of the outmost importance. We therefore study the outcome of the public goods game on two interdependent networks that are connected by means of a utility function, which determines how payoffs on both networks jointly influence the success of players in each individual network. We show that an unbiased coupling allows the spontaneous emergence of interdependent network reciprocity, which is capable to maintain healthy levels of public cooperation even in extremely adverse conditions. The mechanism, however, requires simultaneous formation of correlated cooperator clusters on both networks. If this does not emerge or if the coordination process is disturbed, network reciprocity fails, resulting in the total collapse of cooperation. Network interdependence can thus be exploited effectively to promote cooperation past the limits imposed by isolated networks, but only if the coordination between the interdependent networks is not disturbe

    Mutual Trust and Cooperation in the Evolutionary Hawks-Doves Game

    Full text link
    Using a new dynamical network model of society in which pairwise interactions are weighted according to mutual satisfaction, we show that cooperation is the norm in the Hawks-Doves game when individuals are allowed to break ties with undesirable neighbors and to make new acquaintances in their extended neighborhood. Moreover, cooperation is robust with respect to rather strong strategy perturbations. We also discuss the empirical structure of the emerging networks, and the reasons that allow cooperators to thrive in the population. Given the metaphorical importance of this game for social interaction, this is an encouraging positive result as standard theory for large mixing populations prescribes that a certain fraction of defectors must always exist at equilibrium.Comment: 23 pages 12 images, to appea

    Heterogeneous resource allocation can change social hierarchy in public goods games

    Get PDF
    Public Goods Games represent one of the most useful tools to study group interactions between individuals. However, even if they could provide an explanation for the emergence and stability of cooperation in modern societies, they are not able to reproduce some key features observed in social and economical interactions. The typical shape of wealth distribution - known as Pareto Law - and the microscopic organization of wealth production are two of them. Here, we introduce a modification to the classical formulation of Public Goods Games that allows for the emergence of both of these features from first principles. Unlike traditional Public Goods Games on networks, where players contribute equally to all the games in which they participate, we allow individuals to redistribute their contribution according to what they earned in previous rounds. Results from numerical simulations show that not only a Pareto distribution for the payoffs naturally emerges but also that if players don't invest enough in one round they can act as defectors even if they are formally cooperators. Finally, we also show that the players self-organize in a very productive backbone that covers almost perfectly the minimum spanning tree of the underlying interaction network. Our results not only give an explanation for the presence of the wealth heterogeneity observed in real data but also points to a conceptual change regarding how cooperation is defined in collective dilemmas.Comment: 8 pages, 5 figures, 55 reference

    Evolutionary Games on Networks and Payoff Invariance Under Replicator Dynamics

    Full text link
    The commonly used accumulated payoff scheme is not invariant with respect to shifts of payoff values when applied locally in degree-inhomogeneous population structures. We propose a suitably modified payoff scheme and we show both formally and by numerical simulation, that it leaves the replicator dynamics invariant with respect to affine transformations of the game payoff matrix. We then show empirically that, using the modified payoff scheme, an interesting amount of cooperation can be reached in three paradigmatic non-cooperative two-person games in populations that are structured according to graphs that have a marked degree inhomogeneity, similar to actual graphs found in society. The three games are the Prisoner's Dilemma, the Hawks-Doves and the Stag-Hunt. This confirms previous important observations that, under certain conditions, cooperation may emerge in such network-structured populations, even though standard replicator dynamics for mixing populations prescribes equilibria in which cooperation is totally absent in the Prisoner's Dilemma, and it is less widespread in the other two games.Comment: 20 pages, 8 figures; to appear on BioSystem
    corecore