75,778 research outputs found

    First-principles quantum dynamics for fermions: Application to molecular dissociation

    Full text link
    We demonstrate that the quantum dynamics of a many-body Fermi-Bose system can be simulated using a Gaussian phase-space representation method. In particular, we consider the application of the mixed fermion-boson model to ultracold quantum gases and simulate the dynamics of dissociation of a Bose-Einstein condensate of bosonic dimers into pairs of fermionic atoms. We quantify deviations of atom-atom pair correlations from Wick's factorization scheme, and show that atom-molecule and molecule-molecule correlations grow with time, in clear departures from pairing mean-field theories. As a first-principles approach, the method provides benchmarking of approximate approaches and can be used to validate dynamical probes for characterizing strongly correlated phases of fermionic systems.Comment: Final published versio

    The view from elsewhere: perspectives on ALife Modeling

    Get PDF
    Many artificial life researchers stress the interdisciplinary character of the field. Against such a backdrop, this report reviews and discusses artificial life, as it is depicted in, and as it interfaces with, adjacent disciplines (in particular, philosophy, biology, and linguistics), and in the light of a specific historical example of interdisciplinary research (namely cybernetics) with which artificial life shares many features. This report grew out of a workshop held at the Sixth European Conference on Artificial Life in Prague and features individual contributions from the workshop's eight speakers, plus a section designed to reflect the debates that took place during the workshop's discussion sessions. The major theme that emerged during these sessions was the identity and status of artificial life as a scientific endeavor

    Emergence and Correspondence for String Theory Black Holes

    Get PDF
    This is one of a pair of papers that give a historical-\emph{cum}-philosophical analysis of the endeavour to understand black hole entropy as a statistical mechanical entropy obtained by counting string-theoretic microstates. Both papers focus on Andrew Strominger and Cumrun Vafa's ground-breaking 1996 calculation, which analysed the black hole in terms of D-branes. The first paper gives a conceptual analysis of the Strominger-Vafa argument, and of several research efforts that it engendered. In this paper, we assess whether the black hole should be considered as emergent from the D-brane system, particularly in light of the role that duality plays in the argument. We further identify uses of the quantum-to-classical correspondence principle in string theory discussions of black holes, and compare these to the heuristics of earlier efforts in theory construction, in particular those of the old quantum theory.Comment: 40 page

    A Critical Assessment of the Boltzmann Approach for Active Systems

    Full text link
    Generic models of propelled particle systems posit that the emergence of polar order is driven by the competition between local alignment and noise. Although this notion has been confirmed employing the Boltzmann equation, the range of applicability of this equation remains elusive. We introduce a broad class of mesoscopic collision rules and analyze the prerequisites for the emergence of polar order in the framework of kinetic theory. Our findings suggest that a Boltzmann approach is appropriate for weakly aligning systems but is incompatible with experiments on cluster forming systems.Comment: 11 pages, 3 figure

    Understanding Zipf's law of word frequencies through sample-space collapse in sentence formation

    Full text link
    The formation of sentences is a highly structured and history-dependent process. The probability of using a specific word in a sentence strongly depends on the 'history' of word-usage earlier in that sentence. We study a simple history-dependent model of text generation assuming that the sample-space of word usage reduces along sentence formation, on average. We first show that the model explains the approximate Zipf law found in word frequencies as a direct consequence of sample-space reduction. We then empirically quantify the amount of sample-space reduction in the sentences of ten famous English books, by analysis of corresponding word-transition tables that capture which words can follow any given word in a text. We find a highly nested structure in these transition tables and show that this `nestedness' is tightly related to the power law exponents of the observed word frequency distributions. With the proposed model it is possible to understand that the nestedness of a text can be the origin of the actual scaling exponent, and that deviations from the exact Zipf law can be understood by variations of the degree of nestedness on a book-by-book basis. On a theoretical level we are able to show that in case of weak nesting, Zipf's law breaks down in a fast transition. Unlike previous attempts to understand Zipf's law in language the sample-space reducing model is not based on assumptions of multiplicative, preferential, or self-organised critical mechanisms behind language formation, but simply used the empirically quantifiable parameter 'nestedness' to understand the statistics of word frequencies.Comment: 7 pages, 4 figures. Accepted for publication in the Journal of the Royal Society Interfac
    • …
    corecore