11 research outputs found

    Oxytocin as an Inducer of Cardiomyogenesis

    Get PDF

    Oxytocin as an Inducer of Cardiomyogenesis

    Get PDF

    Laminins in stemness and germ cell development in human

    Get PDF
    Stem cell niches regulate the fine balance between self-renewal and differentiation of various stem cells. Although crucial hallmarks of stem cell niches, such as the mechanical signalling, neural inputs communicating distant cues, the proximity to blood vessels and the structural support by the surrounding basement membrane (BM), have been evaluated in different niches, little much attention has been directed to the specific composition of the BM. As a crucial component of the BM, laminins have shown major importance for physiological development, with lack of laminin α (LAMA) 1 and 5 resulting in major developmental disruptions. Although, the importance of laminin 521 (LN521) in the embryonic inner cell mass (ICM) from which pluripotent stem cells (PSCs) are derived and in tissues such as the pancreas, nervous and muscular system and vasculature has been established, recent mass spectrometry studies of decellularized adult testicular tissue have suggested the presence of LN521 as well as LN121 in the testis. Hence, we aimed to investigate the role of LN521 in stemness behaviour of human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) as well as the potential role of LN521 and 121 in the testicular stem cell niche. Utilizing five human foreskin fibroblast cultured hESC lines, pluripotency after short-term culture on LN521, LN121 and Matrigel was evaluated. We found that LN521, not only supports cell adhesion and stem cell maintenance but further homogenises the pluripotency expression pattern between the cell lines. Further, by applying LN521 as a culture substrate for derivation of Klinefelter syndrome (KS) hiPSCs, we demonstrated the beneficial effect of LN521 on fibroblast reprogramming efficiency. By utilizing LN521 as culture substrate of KS derived hiPSCs we additionally revealed a similar X chromosome inactivation (XCI) behaviour to female cultured PSCs, observed by either the maintenance of XCI with one inactive X chromosome or erosion of XCI. Finally, testicular laminin composition was evaluated during gonadal development and its importance for spermatogonial stem cell maintenance evaluated. We found LAMA 5 to be restricted to the vasculature while LAMA 1 was the sole α laminin chain of prenatal and preand peripubertal seminiferous cords and tubules. LAMA 1 was further restricted to the innermost basal lamina of the adult seminiferous tubules. Interestingly, LAMA 1 loss, as a result of inadequate culture conditions, correlated with a loss of germ cells. In conclusion we demonstrated the importance of LN521 in stem cell maintenance of hESCs and hiPSCs and revealed a correlation between germ cell maintenance and presence of LN121

    Le peptide natriurétique auriculaire induit la différenciation cardiaque dans les cellules souches embryonnaires carcinomateuses de souris P19

    Full text link
    Traditionnellement associĂ©e Ă  la reproduction fĂ©minine, l'ocytocine (OT), une hormone peptidique synthĂ©tisĂ©e par les noyaux paraventriculaire et supraoptique de l'hypothalamus et sĂ©crĂ©tĂ©e par l'hypophyse postĂ©rieure (neurohypophyse), a Ă©tĂ© rĂ©cemment revue et a Ă©tĂ© dĂ©montrĂ©e avoir plusieurs nouveaux rĂŽles dans le systĂšme cardio-vasculaire. En effet, notre laboratoire a montrĂ© que l’OT peut induire la diffĂ©renciation des cellules souches embryonnaires (CSE) en cardiomyocytes (CM) fonctionnels. À l’aide du modĂšle cellulaire embryonnaire carcinomateux de souris P19, il a Ă©tĂ© dĂ©montrĂ© que ce processus survenait suite Ă  la libĂ©ration de la guanosine monophosphate cyclique (GMPc) dĂ©pendante du monoxyde d’azote. De mĂȘme, il est connu que le peptide natriurĂ©tique auriculaire (ANP), un peptide produit, stockĂ© et sĂ©crĂ©tĂ© par les myocytes cardiaques, peut aussi induire la production du GMPc. De nombreuses Ă©tudes ont dĂ©montrĂ© que le cƓur ayant subi un infarctus pouvait ĂȘtre rĂ©gĂ©nĂ©rĂ© Ă  partir d’une population isolĂ©e de cellules souches et progĂ©nitrices transplantĂ©es. Une de ces populations de cellules, frĂ©quemment isolĂ©es Ă  partir d'organes provenant d'animaux aux stades de dĂ©veloppement embryonnaire et adulte, appelĂ©e « Side Population » (SP), sont identifiĂ©es par cytomĂ©trie en flux (FACS) comme une population de cellules non marquĂ©es par le colorant fluorescent Hoechst 33342 (Ho). Les cellules SP expriment des protĂ©ines de transport spĂ©cifiques, de la famille ATP-binding cassette, qui ont pour rĂŽle de transporter activement le colorant fluorescent Ho de leur cytoplasme. La sous-population de cellules SP isolĂ©e du cƓur affiche un potentiel de diffĂ©renciation cardiaque amĂ©liorĂ© en rĂ©ponse Ă  un traitement avec l’OT. RĂ©cemment, l'hĂ©tĂ©rogĂ©nĂ©itĂ© phĂ©notypique et fonctionnelle des CSE a Ă©tĂ© mise en Ă©vidence, et cela a Ă©tĂ© corrĂ©lĂ© avec la prĂ©sence de sous-populations cellulaires ressemblant beaucoup aux cellules SP issues du cƓur. Puisque l’ANP peut induire la production du GMPc et qu’il a Ă©tĂ© dĂ©montrĂ© que la diffĂ©renciation cardiaque Ă©tait mĂ©diĂ©e par la production du GMPc, alors nous Ă©mettons l'hypothĂšse selon laquelle l’ANP pourrait induire la diffĂ©renciation cardiaque. Étant donnĂ© que les CSE sont composĂ©s d’un mĂ©lange de diffĂ©rents types cellulaires alors nous Ă©mettons aussi l’hypothĂšse selon laquelle l’utilisation d’une sous-population de CSE plus homogĂšne renforcerait le potentiel de diffĂ©renciation de l'ANP. MĂ©thodes : Les SP ont Ă©tĂ© isolĂ©es des cellules P19 par FACS en utilisant la mĂ©thode d’exclusion du colorant fluorescent Ho. Puis, leur phĂ©notype a Ă©tĂ© caractĂ©risĂ© par immunofluorescence (IF) pour les marqueurs de l’état indiffĂ©renciĂ©, d’auto-renouvellement et de pluripotence octamer-binding transcription factor 4 (OCT4) et stage-specific embryonic antigen-1 (SSEA1). Ensuite, la dose pharmacologique optimale d’ANP a Ă©tĂ© dĂ©terminĂ©e via des tests de cytotoxicitĂ© sur des cellules P19 (MTT assay). Pour induire la diffĂ©renciation en cardiomyocytes, des cellules Ă  l’état de sphĂ©roĂŻdes ont Ă©tĂ© formĂ©es Ă  l’aide de la technique du « Hanging-Drop » sous la stimulation de l’ANP pendant 5 jours. Puis, des cryosections ont Ă©tĂ© faites dans les sphĂ©roĂŻdes afin de mettre en Ă©vidence la prĂ©sence de marqueurs de cellules cardiaques progĂ©nitrices tels que GATA4, Nkx2.5 et un marqueur mitochondrial spĂ©cifique Tom22. Ensuite, les cellules SP P19 ont Ă©tĂ© stimulĂ©es dans les sphĂ©roĂŻdes cellulaires par le traitement avec de l'ANP (10-7 M) ou de l’OT (10-7 M), de l’antagoniste spĂ©cifique du guanylate cyclase particulĂ© (GCp) A71915 (10-6 M), ainsi que la combinaison des inducteurs OT+ANP, OT+A71915, ANP+A71915. AprĂšs la mise en culture, la diffĂ©renciation en cardiomyocytes a Ă©tĂ© identifiĂ© par l’apparition de colonies de cellules battantes caractĂ©ristiques des cellules cardiaques, par la dĂ©termination du phĂ©notype cellulaire par IF, et enfin par l’extraction d'ARN et de protĂ©ines qui ont Ă©tĂ© utilisĂ©s pour le dosage du GMPc par RIA, l’expression des ARNm par RT-PCR et l’expression des protĂ©ines par immunobuvardage de type western. RĂ©sultats : Les sphĂ©roĂŻdes obtenus Ă  l’aide de la technique du « Hanging-Drop » ont montrĂ© une hausse modeste de l’expression des ARNm suivants : OTR, ANP et GATA4 comparativement aux cellules cultivĂ©es en monocouches. Les sphĂ©roĂŻdes induits par l’ANP ont prĂ©sentĂ© une augmentation significative des facteurs de transcription cardiaque GATA4 et Nkx2.5 ainsi qu’un plus grand nombre de mitochondries caractĂ©risĂ© par une plus grande prĂ©sence de Tom22. De plus, L’ANP a induit l’apparition de colonies de cellules battantes du jour 7 (stade prĂ©coce) au jour 14 (stade mature) de façon presque similaire Ă  l’OT. Cependant, la combinaison de l’ANP avec l’OT n’a pas induit de colonies de cellules battantes suggĂ©rant un effet opposĂ© Ă  celui de l’OT. Par IF, nous avons quantifiĂ© (nombre de cellules positives) et caractĂ©risĂ©, du jour 6 au jour 14 de diffĂ©renciation, le phĂ©notype cardiaque de nos cellules en utilisant les marqueurs suivants : Troponine T Cardiaque, ANP, Connexines 40 et 43, l’isoforme ventriculaire de la chaĂźne lĂ©gĂšre de myosine (MLC-2v), OTR. Les SP diffĂ©renciĂ©es sous la stimulation de l’ANP ont montrĂ© une augmentation significative du GMPc intracellulaire comparĂ© aux cellules non diffĂ©renciĂ©es. À notre grande surprise, l’antagoniste A71915 a induit une plus grande apparition de colonies de cellules battantes comparativement Ă  l’OT et l’ANP Ă  un jour prĂ©coce de diffĂ©renciation cardiaque et l’ajout de l’OT ou de l’ANP a potentialisĂ© ses effets, augmentant encore plus la proportion de colonies de cellules battantes. De plus, la taille des colonies de cellules battantes Ă©tait encore plus importante que sous la simple stimulation de l’OT ou de l’ANP. Les analyses radioimmunologiques dans les cellules SP P19 stimulĂ©s avec l’ANP, A71915 et la combinaison des deux pendant 15min, 30min et 60min a montrĂ© que l’ANP stimule significativement la production du GMPc, cependant A71915 n’abolit pas les effets de l’ANP et celui-ci au contraire stimule la production du GMPc via des effets agonistes partiels. Conclusion : Nos rĂ©sultats dĂ©montrent d’une part que l’ANP induit la diffĂ©renciation des cellules SP P19 en CM fonctionnels. D’autre part, il semblerait que la voie de signalisation NPRA-B/GCp/GMPc soit impliquĂ©e dans le mĂ©canisme de diffĂ©renciation cardiaque puisque l’abolition du GMPc mĂ©diĂ©e par le GCp potentialise la diffĂ©renciation cardiaque et il semblerait que cette voie de signalisation soit additive de la voie de signalisation induite par l’OT, NO/GCs/GMPc, puisque l’ajout de l’OT Ă  l’antagoniste A71915 stimule plus fortement la diffĂ©renciation cardiaque que l’OT ou l’A71915 seuls. Cela suggĂšre que l’effet thĂ©rapeutique des peptides natriurĂ©tiques observĂ© dans la dĂ©faillance cardiaque ainsi que les propriĂ©tĂ©s vasodilatatrices de certains antagonistes des rĂ©cepteurs peptidiques natriurĂ©tiques inclus la stimulation de la diffĂ©renciation des cellules souches en cardiomyocytes. Cela laisse donc Ă  penser que les peptides natriurĂ©tiques ou les antagonistes des rĂ©cepteurs peptidiques natriurĂ©tiques pourraient ĂȘtre une alternative trĂšs intĂ©ressante dans la thĂ©rapie cellulaire visant Ă  induire la rĂ©gĂ©nĂ©ration cardiovasculaire.Traditionally associated with female reproduction, oxytocin (OT), a peptidic hormone synthesized in the paraventricular and supraoptic nuclei of the hypothalamus and secreted by the posterior pituitary (neurohypophysis), was revisited recently and was revealed to have several new roles in the cardiovascular system. Indeed, our laboratory has shown that OT can induce the differentiation of embryonic stem cells (ESC) into functional cardiomyocytes (CM). On the model of embryonal carcinoma cell line P19, it has been shown that this process occurs following the release of cyclic guanosine monophosphate (cGMP)-dependent nitric oxide. Similarly, it is known that atrial natriuretic peptide (ANP), a peptide produced, stored and secreted by cardiac myocytes, can also induce the release of cGMP. However, the cellular mechanisms involved in cardiac differentiation are still poorly understood. Numerous studies have shown that the injured heart can be regenerated from an isolated population of transplanted stem and progenitor cells. One of these cell populations, frequently isolated from embryonic and adult animal organs, called "Side Population" (SP), is characterized by active efflux of the fluorescent dye Hoechst 33342 (Ho). SP cells express specific ATP-binding cassette transporter proteins which actively transport Ho out of their cytoplasm. The SP cell subpopulation isolated from the heart display enhanced differentiation potential into cardiac phenotype in response to OT treatment. Recently, the phenotypic and functional heterogeneity of embryonic stem cells has been demonstrated, and this was correlated with the presence of cell subpopulations much like the SP cells from the heart and these cells can be identified by flow cytometry (FACS) as a population of unmarked cells by the Ho and which exhibit sensitivity to the inhibitor of the family of ATP-binding cassette ABC, verapamil. Thus, the SP from ESC could be a good candidate to induce cell differentiation more effectively to the cardiac phenotype. Since ANP can induce the release of cGMP and it has been shown that cardiac differentiation was mediated by the release of cGMP through the nitric oxide (NO), then we therefore formulate the hypothesis that ANP could also induce cardiac differentiation. Since ESC are composed of a mixture of different cell types so as we emit the hypothesis that the use of a subpopulation of more homogeneous ESC strengthen the differentiation potential of ANP. Methods: SP were isolated from P19 cells by FACS using the method of exclusion of fluorescent dye Hoechst and their phenotype was characterized by immunofluorescence (IF) for markers of the undifferentiated state, self-renewal and pluripotency OCT4 and SSEA1. Then, the optimal pharmacological dose of ANP was determined via cytotoxicity tests in P19 cells (MTT assay). For cardiac differentiation, cells in the form of spheroids were formed using the technique of "Hanging Drop" under the stimulation of ANP for 5 days. Then cuts were made in the spheroids via cryosection to highlight the presence of cardiac progenitor cell markers such as GATA4, Nkx2.5 and a specific mitochondrial marker Tom22. Next, the P19-SP cells were stimulated in cell spheroids by the treatment with ANP (10-7 M) or OT (10-7 M), the specific antagonist of particulate guanylate cyclase A71915 (10-6 M), and the combination of the inducers OT + ANP, OT + A71915, A71915 + ANP. After cell plating, the differentiation into cardiomyocytes has been identified by the appearance of beating cell colonies characteristics of contractile cardiac cells, by determining the cellular phenotype by IF, and finally by the extraction of RNA and proteins that were used for the determination of cGMP by RIA, the mRNA expression by RT-PCR and protein expression by western blotting. Results: The spheroids induced by ANP showed a significant increase in the presence of cardiac transcription factors GATA4 and Nkx2.5 as well as a greater number of mitochondria characterized by a greater presence of Tom22 compared with no induced cells suggesting a cardiomyogenic effect of ANP. In addition, ANP induced the appearance of beating cell colonies from day 7 (early stage) to day 14 (mature stage) similarly to OT. However, the combination of ANP with OT did not induce beating cell colonies suggesting a negative additive effect on cardiomyogenesis. The spheroids, obtained using the technique of "Hanging Drop", have shown a modest increase in mRNA expression as follows: OTR, ANP and GATA4 compared to cells grown in monolayers. By IF, we quantified (number of positive cells) and characterized, from day 6 to day 14 of differentiation, the cardiac phenotype of our cells using the following markers: Cardiac Troponin T, ANP, Connexines 40 and 43, Myosin Light Chain-2V, OTR. The SP differentiated under the stimulation of ANP showed a significant increase in intracellular cGMP compared with undifferentiated cells. Surprisingly, the antagonist A71915 induced a greater appearance of beating cell colonies compared to OT and ANP in early day of cardiac differentiation and the addition of OT or ANP potentiated its effects, further increasing the proportion of beating cells colonies. In addition, the size of beating cell colonies was even greater than under the simple stimulation of OT or ANP. Radioimmunoassay analysis in SP P19 cells stimulated with ANP, A71915 and the combination of both during 15min, 30min and 60min showed that ANP significantly stimulates the release of cGMP, however, A71915 does not abolish the effects of ANP and it rather stimulates the release of cGMP through partial agonist effects. Conclusion: Our results demonstrate firstly that ANP induces the differentiation of P19-SP cells into functional CM. Moreover, it appears that the signaling pathway NPRA-B/pGC/cGMP seems to be involved in the mechanism of cardiac differentiation since the abolition of cGMP mediated by the pGC potentiates cardiac differentiation and it appears that this signaling pathway is additive to the signaling pathway induced by OT, NO/sGC/cGMP, since the addition of OT to the antagonist A71915 stimulates cardiac differentiation more strongly than OT or A71915 alone. This suggests that the therapeutic effect of natriuretic peptides observed in heart failure and vasodilatory properties of certain natriuretic peptide receptor antagonists included the stimulation of stem cell differentiation into cardiomyocytes. This would therefore suggest that the natriuretic peptides or natriuretic peptide receptor antagonists could be an attractive alternative to cell therapy to induce heart regeneration

    Current Frontiers and Perspectives in Cell Biology

    Get PDF
    A numerous internationally renowned authors in the pages of this book present the views of the fields of cell biology and their own research results or review of current knowledge. Chapters are divided into five sections that are dedicated to cell structures and functions, genetic material, regulatory mechanisms, cellular biomedicine and new methods in cell biology. Multidisciplinary and often quite versatile approach by many authors have imposed restrictions of this classification, so it is certain that many chapters could belong to the other sections of this book. The current frontiers, on the manner in which they described in the book, can be a good inspiration to many readers for further improving, and perspectives which are highlighted can be seen in many areas of fundamental biology, biomedicine, biotechnology and other applications of knowledge of cell biology. The book will be very useful for beginners to gain insight into new area, as well as experts to find new facts and expanding horizons

    Validation des modÚles de pharmacologie de sécurité et évaluation de la valeur thérapeutique de l'oxytocine dans le traitement de l'infarctus du myocarde

    Get PDF
    En fĂ©vrier, 2009 un rapport de PHRMA (Pharmaceutical Research and Manufacturers of America) confirmait que plus de 300 mĂ©dicaments pour le traitement des maladies cardiaques Ă©taient en phase d’essais cliniques ou en rĂ©vision par les agences rĂšglementaires. MalgrĂ© cette abondance de nouvelles thĂ©rapies cardiovasculaires, le nombre de nouveaux mĂ©dicaments approuvĂ©s chaque annĂ©e (toutes indications confondues) est en dĂ©clin avec seulement 17 et 24 nouveaux mĂ©dicaments approuvĂ©s en 2007 et 2008, respectivement. Seulement 1 mĂ©dicament sur 5000 sera approuvĂ© aprĂšs 10 Ă  15 ans de dĂ©veloppement au coĂ»t moyen de 800 millions .Denombreusesinitiativesonteˊteˊlanceˊesparlesagencesreˋglementairesafind’augmenterletauxdesucceˋslorsdudeˊveloppementdesnouveauxmeˊdicamentsmaislesreˊsultatstardent.Cettestagnationestattribueˊeaumanqued’efficaciteˊdunouveaumeˊdicamentdansbiendescasmaisleseˊvaluationsd’innocuiteˊremportentlapalmedescausesd’arre^tdedeˊveloppement.Primumnonnocere,lamaximed’Hippocrate,peˋredelameˊdecine,demeured’actualiteˊendeˊveloppementpreˊcliniqueetcliniquedesmeˊdicaments.Environ3Eˊvoluantparmilescontraintesetlesdeˊfisdesprogrammesdedeˊveloppementsdesmeˊdicaments,nousavonseˊvalueˊl’efficaciteˊetl’innocuiteˊdel’oxytocine(OT),unpeptideendogeˋneaˋdesfinstheˊrapeutiques.L’OT,unehormonehistoriquementassocieˊeaˋlareproduction,adeˊmontreˊlacapaciteˊd’induireladiffeˊrentiationinvitrodeligneˊescellulaires(P19)maisaussidecellulessouchesembryonnairesencardiomyocytesbattants.Cesobservationsnousontameneˊaˋconsideˊrerl’utilisationdel’OTdansletraitementdel’infarctusdumyocarde.Afind’arriveraˋcetobjectifultime,nousavonsd’abordeˊvalueˊlapharmacocineˊtiquedel’OTdansunmodeˋlederatanestheˊsieˊ.Ceseˊtudesontmiseneˊvidencedescaracteˊristiquesuniquesdel’OTdontunecourtedemi−vieetunprofilpharmacocineˊtiquenon−lineˊaireenrelationavecladoseadministreˊe.Ensuite,nousavonseˊvalueˊleseffetscardiovasculairesdel’OTsurdesanimauxsainsdediffeˊrentesespeˋces.Enrecherchepreˊclinique,l’utilisationdeplusieursespeˋcesainsiquedediffeˊrentseˊtats(conscientsetanestheˊsieˊs)estreconnuecommeeˊtantunedesmeilleuresapprochesafind’accroı^trelavaleurpreˊdictivedesreˊsultatsobtenuschezlesanimauxaˋlareˊponsechezl’humain.Desmodeˋlesderatsanestheˊsieˊseteˊveilleˊs,dechiensanestheˊsieˊseteˊveilleˊsetdesingeseˊveilleˊsavecsuivicardiovasculaireparteˊleˊmeˊtrieonteˊteˊutiliseˊs.L’OTs’estaveˊreˊe^treunagentayantd’importantseffetsheˊmodynamiquespreˊsentantunereˊponsevariableselonl’eˊtat(anestheˊsieˊoueˊveilleˊ),ladose,lemoded’administration(bolusouinfusion)etl’espeˋceutiliseˊe.Ceseˊtudesnousontpermisd’eˊtablirlesdosesetreˊgimesdetraitementn’ayantpasd’effetscardiovasculairesadversesetpouvante^treutiliseˊesdanslecadredeseˊtudesd’efficaciteˊsubseˊquentes.Unmodeˋleporcind’infarctusdumyocardeavecreperfusionaeˊteˊutiliseˊafind’eˊvaluerleseffetsdel’OTdansletraitementdel’infarctusdumyocarde.Danslecadred’unprojetpilote,l’infusioncontinued’OTinitieˊeimmeˊdiatementaumomentdelareperfusioncoronarienneainduitdeseffetscardiovasculairesadversescheztouslesanimauxtraiteˊsincluantunereˊductiondelafractionderaccourcissementventriculairegaucheetuneaggravationdelacardiomyopathiedilateˊesuiteaˋl’infarctus.Consideˊrantcesobservations,l’approchetheˊrapeutiquefu^treˊviseˊeafind’eˊviterletraitementpendantlapeˊrioded’inflammationaigušeconsideˊreˊemaximaleautourdu3ieˋmejoursuiteaˋl’ischeˊmie.Lorsqu’initieˊ8joursapreˋsl’ischeˊmiemyocardique,l’infusiond’OTaengendreˊdeseffetsadverseschezlesanimauxayantdesniveauxendogeˋnesd’OTeˊleveˊs.Parailleurs,aucuneffetadverse(ameˊliorationnon−significative)nefu^tobserveˊchezlesanimauxayantunfaibleniveauendogeˋned’OT.Chezlesanimauxdugroupeplacebo,unetendanceaˋobserverunemeilleurereˊcupeˊrationchezceuxayantdesniveauxendogeˋnesinitiauxeˊleveˊsfu^tnoteˊe.Bienquelatailledelazoneischeˊmiqueaˋrisquesoitcomparableaˋcellerencontreˊechezlespatientsatteintsd’infarctus,l’utilisationd’animauxjuveˊnilesetl’absencedemaladiescoronariennessontdeslimitationsimportantesdumodeˋleporcinutiliseˊ.Lepotentieldel’OTpourletraitementdel’infarctusdumyocardedemeuremaisnosreˊsultatssuggeˋrentqu’uneadministrationsysteˊmiqueaˋtitredetheˊrapiederemplacementdel’OTdevraite^treconsideˊreˊeenfonctionduniveauendogeˋne.Deplusampleseˊvaluationsdelaseˊcuriteˊdutraitementavecl’OTdansdesmodeˋlesanimauxd’infarctusdumyocardeserontneˊcessairesavantdeconsideˊrerl’utilisationd’OTdansunepopulationdepatientsatteintd’uninfarctusdumyocarde.Encontrepartie,lesniveauxendogeˋnesd’OTpourraientposseˊderunevaleurpronostiqueetdeseˊtudescliniquesaˋceteˊgardpourraiente^tred’inteˊre^t.Infebruary2009,areportfromPHRMA(PharmaceuticalResearchandManufacturersofAmerica)confirmedthatmorethan300drugsfortreatmentofcardiovasculardiseaseswereinclinicaltrialsorunderreviewbyregulatoryagencies.Despitetheabundanceofnewcardiovasculartherapies,thenumberofnewdrugsapprovedeachyear(allindicationscombined)isdecliningsteadilywithonly17and24newdrugsapprovedin2007and2008,respectively.Only1drugoutof5000candidateswillbeapprovedafter10to15yearsofdevelopmentwithanaveragecostof. De nombreuses initiatives ont Ă©tĂ© lancĂ©es par les agences rĂšglementaires afin d’augmenter le taux de succĂšs lors du dĂ©veloppement des nouveaux mĂ©dicaments mais les rĂ©sultats tardent. Cette stagnation est attribuĂ©e au manque d’efficacitĂ© du nouveau mĂ©dicament dans bien des cas mais les Ă©valuations d’innocuitĂ© remportent la palme des causes d’arrĂȘt de dĂ©veloppement. Primum non nocere, la maxime d’Hippocrate, pĂšre de la mĂ©decine, demeure d’actualitĂ© en dĂ©veloppement prĂ©clinique et clinique des mĂ©dicaments. Environ 3% des mĂ©dicaments approuvĂ©s au cours des 20 derniĂšres annĂ©es ont, par la suite, Ă©tĂ© retirĂ©s du marchĂ© suite Ă  l’identification d’effets adverses. Les effets adverses cardiovasculaires reprĂ©sentent la plus frĂ©quente cause d’arrĂȘt de dĂ©veloppement ou de retrait de mĂ©dicament (27%) suivi par les effets sur le systĂšme nerveux. AprĂšs avoir dĂ©fini le contexte des Ă©valuations de pharmacologie de sĂ©curitĂ© et l’utilisation des bio-marqueurs, nous avons validĂ© des modĂšles d’évaluation de l’innocuitĂ© des nouveaux mĂ©dicaments sur les systĂšmes cardiovasculaires, respiratoires et nerveux. Évoluant parmi les contraintes et les dĂ©fis des programmes de dĂ©veloppements des mĂ©dicaments, nous avons Ă©valuĂ© l’efficacitĂ© et l’innocuitĂ© de l’oxytocine (OT), un peptide endogĂšne Ă  des fins thĂ©rapeutiques. L’OT, une hormone historiquement associĂ©e Ă  la reproduction, a dĂ©montrĂ© la capacitĂ© d’induire la diffĂ©rentiation in vitro de lignĂ©es cellulaires (P19) mais aussi de cellules souches embryonnaires en cardiomyocytes battants. Ces observations nous ont amenĂ© Ă  considĂ©rer l’utilisation de l’OT dans le traitement de l’infarctus du myocarde. Afin d’arriver Ă  cet objectif ultime, nous avons d’abord Ă©valuĂ© la pharmacocinĂ©tique de l’OT dans un modĂšle de rat anesthĂ©siĂ©. Ces Ă©tudes ont mis en Ă©vidence des caractĂ©ristiques uniques de l’OT dont une courte demi-vie et un profil pharmacocinĂ©tique non-linĂ©aire en relation avec la dose administrĂ©e. Ensuite, nous avons Ă©valuĂ© les effets cardiovasculaires de l’OT sur des animaux sains de diffĂ©rentes espĂšces. En recherche prĂ©clinique, l’utilisation de plusieurs espĂšces ainsi que de diffĂ©rents Ă©tats (conscients et anesthĂ©siĂ©s) est reconnue comme Ă©tant une des meilleures approches afin d’accroĂźtre la valeur prĂ©dictive des rĂ©sultats obtenus chez les animaux Ă  la rĂ©ponse chez l’humain. Des modĂšles de rats anesthĂ©siĂ©s et Ă©veillĂ©s, de chiens anesthĂ©siĂ©s et Ă©veillĂ©s et de singes Ă©veillĂ©s avec suivi cardiovasculaire par tĂ©lĂ©mĂ©trie ont Ă©tĂ© utilisĂ©s. L’OT s’est avĂ©rĂ© ĂȘtre un agent ayant d’importants effets hĂ©modynamiques prĂ©sentant une rĂ©ponse variable selon l’état (anesthĂ©siĂ© ou Ă©veillĂ©), la dose, le mode d’administration (bolus ou infusion) et l’espĂšce utilisĂ©e. Ces Ă©tudes nous ont permis d’établir les doses et rĂ©gimes de traitement n’ayant pas d’effets cardiovasculaires adverses et pouvant ĂȘtre utilisĂ©es dans le cadre des Ă©tudes d’efficacitĂ© subsĂ©quentes. Un modĂšle porcin d’infarctus du myocarde avec reperfusion a Ă©tĂ© utilisĂ© afin d’évaluer les effets de l’OT dans le traitement de l’infarctus du myocarde. Dans le cadre d’un projet pilote, l’infusion continue d’OT initiĂ©e immĂ©diatement au moment de la reperfusion coronarienne a induit des effets cardiovasculaires adverses chez tous les animaux traitĂ©s incluant une rĂ©duction de la fraction de raccourcissement ventriculaire gauche et une aggravation de la cardiomyopathie dilatĂ©e suite Ă  l’infarctus. ConsidĂ©rant ces observations, l’approche thĂ©rapeutique fĂ»t rĂ©visĂ©e afin d’éviter le traitement pendant la pĂ©riode d’inflammation aigĂŒe considĂ©rĂ©e maximale autour du 3iĂšme jour suite Ă  l’ischĂ©mie. Lorsqu’initiĂ© 8 jours aprĂšs l’ischĂ©mie myocardique, l’infusion d’OT a engendrĂ© des effets adverses chez les animaux ayant des niveaux endogĂšnes d’OT Ă©levĂ©s. Par ailleurs, aucun effet adverse (amĂ©lioration non-significative) ne fĂ»t observĂ© chez les animaux ayant un faible niveau endogĂšne d’OT. Chez les animaux du groupe placebo, une tendance Ă  observer une meilleure rĂ©cupĂ©ration chez ceux ayant des niveaux endogĂšnes initiaux Ă©levĂ©s fĂ»t notĂ©e. Bien que la taille de la zone ischĂ©mique Ă  risque soit comparable Ă  celle rencontrĂ©e chez les patients atteints d’infarctus, l’utilisation d’animaux juvĂ©niles et l’absence de maladies coronariennes sont des limitations importantes du modĂšle porcin utilisĂ©. Le potentiel de l’OT pour le traitement de l’infarctus du myocarde demeure mais nos rĂ©sultats suggĂšrent qu’une administration systĂ©mique Ă  titre de thĂ©rapie de remplacement de l’OT devrait ĂȘtre considĂ©rĂ©e en fonction du niveau endogĂšne. De plus amples Ă©valuations de la sĂ©curitĂ© du traitement avec l’OT dans des modĂšles animaux d’infarctus du myocarde seront nĂ©cessaires avant de considĂ©rer l’utilisation d’OT dans une population de patients atteint d’un infarctus du myocarde. En contre partie, les niveaux endogĂšnes d’OT pourraient possĂ©der une valeur pronostique et des Ă©tudes cliniques Ă  cet Ă©gard pourraient ĂȘtre d’intĂ©rĂȘt.In february 2009, a report from PHRMA (Pharmaceutical Research and Manufacturers of America) confirmed that more than 300 drugs for treatment of cardiovascular diseases were in clinical trials or under review by regulatory agencies. Despite the abundance of new cardiovascular therapies, the number of new drugs approved each year (all indications combined) is declining steadily with only 17 and 24 new drugs approved in 2007 and 2008, respectively. Only 1 drug out of 5000 candidates will be approved after 10 to 15 years of development with an average cost of 800 millions. Several initiatives have been launched by regulatory agencies to increase the success rate in drug development but results are still awaited. This stagnation is attributed to the lack of efficacy of several drug candidates but safety assessments are the leading cause of drug development discontinuation. Primum non nocere, the maxim from Hippocrate, father of medicine, remains of major relevance in preclinical and clinical drug development. Over the past 20 years, approximately 3% of approved drugs were subsequently withdrawn from the market due to adverse effects. Cardiovascular adverse effects represent the most frequent cause of drug development discontinuation or withdrawal (27%) followed by effects on the nervous system. After defining the context of safety pharmacology evaluations and the use of biomarkers in drug development, we validated safety pharmacology models to investigate drug-induced cardiovascular, respiratory and neurological effects. As we progressed within constraints and challenges of drug development, we evaluated the efficacy and safety of oxytocin, an endogenous peptide with therapeutic potential. Oxytocin (OT), a hormone historically associated with reproduction, demonstrated the ability to induce in vitro differentiation of cell lines (P19) but also embryonic stem cells into beating cardiomyocytes. These observations lead us to consider the use of OT as a treatment for myocardial infarct. To achieve this ultimate goal, we first evaluated the pharmacokinetic of OT in an anesthetized rat model. These investigations highlighted the unique characteristics of OT including a very short half-life and a non-linear pharmacokinetic profile in response to the dose. Cardiovascular effects of OT in healthy animals were then evaluated in various species. In preclinical research, the use of various animal species and state of consciousness (conscious or anesthetized) is recognized as one of the best strategies to increase the predictive value of results obtained in animals to the human response. Our initial investigations of OT treatment regimens used various animal models including conscious and anesthetized rats, anesthetized pigs, conscious dogs with indirect blood pressure monitoring and diuresis and conscious monkeys with cardiovascular telemetry monitoring. These studies confirmed OT to have significant hemodynamic effects with variable responses depending on the state of consciousness (conscious or anesthetized), the dose, the administration protocol (bolus or infusion) and the species that were used. These screening studies enabled selection of a treatment regimen and dose without adverse effects that could subsequently be tested in efficacy studies. A porcine myocardial infarct (MI) model with reperfusion was used to evaluate the effects of OT following myocardial ischemia. In a pilot project, continuous infusion of OT initiated immediately at coronary reperfusion induced cardiovascular adverse effects in all treated animals including a reduction of left ventricular fraction shortening and worsening of dilated cardiomyopathy which is typical following MI. Considering these observations, the therapeutic strategy was revised to avoid OT treatment during the inflammatory phase which was considered maximal around day 3 post-ischemia. When initiated 8 days after MI, OT infusion induced adverse effects in animals with elevated endogenous levels of OT. In contrast, no significant effects (not statistically significant improvement) were observed in animals with low endogenous OT baseline. In placebo treated animals, a trend to observe a better recovery was noted in animals with high endogenous OT baseline. While the size of the ischemic zone was comparable to human patients with MI, the use of juvenile animals and the absence of coronary disease are important limitations of the porcine model. The potential of OT for treatment of MI remains but our results suggest that systemic administration of OT by continuous infusion as part of a replacement therapy should be investigated further in relation to endogenous levels. Further investigations on safety of the treatment with OT on animal MI models are warranted before the use of OT can be considered in the patient population after myocardial infarct. On the other hand, endogenous levels of OT may have a prognostic value and clinical trials to investigate this hypothesis may be of interest

    Embryoid bodies from mouse stem cells express oxytocin receptor, Oct-4 and DAZL

    No full text
    Oxytocin is a nine amino acid peptide involved in a wide spectrum of physiological functions; predominantly those concerning reproduction and differentiation are of interest. Oxytocin receptors are expressed at early developmental stages of mammals, suggesting that oxytocin might be involved in the determination of the germ stem cell line, at the very early stages of mammalian development. In this respect, the proximate aim of the present study was to confirm and further analyze the existence of oxytocin receptors at a very early level of cell commitment, that is, the determination of germ cells derived from embryoid bodies. To achieve our purpose we have cultured mouse embryonic stem cells under conditions inducing formation of embryoid bodies. In this work, ES cells were allowed to aggregate in a novel medium, "Stefanidis medium" from day 0 to day 14 until formed EBs. RNA was isolated from EBs and using RT-PCR we showed that EBs expressed Oct-4, OTR, OT, and DAZL. To demonstrate simultaneous expression immunocytochemistry was preformed, in which EBs showed strong immunoreactivity for both, OTR and DAZL molecular markers. We found that 35% of the cells displayed OTR, using flow cytometry. In addition, this novel medium showed to increase OTR mRNA. We propose, that at least in murine induced embryoid bodies there is simultaneous expression of oxytocin receptors and germ cell markers (DAZL) in many cells (expressing Oct-4). We thus conclude that, the oxytocin might indeed be a molecule playing a leading role in germ cell determination. © 2009 Elsevier Ireland Ltd

    Stem Cells in Domestic Animals: Applications in Health and Production

    Get PDF
    Stem cells are an attractive tool for cell-based therapies in regenerative medicine, both for humans and animals. The research and review articles published in this first book of the Collection “Stem Cells in Domestic Animals: Applications in Health and Production” are excellent examples of the recent advances made in the field of stem/stromal cell research in veterinary medicine. In this field, sophisticated and new treatments are now required for improving patients’ quality of life; in livestock animals, the goal of regenerative medicine is to improve not only animal welfare but also the quality of production, aiming to preserve human health. The contributions collected in this book concern both laboratory research and clinical applications of mesenchymal stem/stromal cells. The increasing knowledge of cell-based therapies may constitute an opportunity for researchers, veterinary practitioners, and animal owners to contribute to animal and human health and well-being

    Stem Cells in Domestic Animals

    Get PDF
    Stem cells are an attractive tool for cell-based therapies in regenerative medicine, both for humans and animals. The research and review articles published in this first book of the Collection “Stem Cells in Domestic Animals: Applications in Health and Production” are excellent examples of the recent advances made in the field of stem/stromal cell research in veterinary medicine. In this field, sophisticated and new treatments are now required for improving patients’ quality of life; in livestock animals, the goal of regenerative medicine is to improve not only animal welfare but also the quality of production, aiming to preserve human health. The contributions collected in this book concern both laboratory research and clinical applications of mesenchymal stem/stromal cells. The increasing knowledge of cell-based therapies may constitute an opportunity for researchers, veterinary practitioners, and animal owners to contribute to animal and human health and well-being
    corecore