7,206 research outputs found

    Space-Time Localisation with Quantum Fields

    Full text link
    We introduce observables associated with the space-time position of a quantum point defined by the intersection of two light pulses. The time observable is canonically conjugated to the energy. Conformal symmetry of massless quantum fields is used first to build the definition of these observables and then to describe their relativistic properties under frame transformations. The transformations to accelerated frames of the space-time observables depart from the laws of classical relativity. The Einstein laws for the shifts of clock rates and frequencies are recovered in the quantum description, and their formulation provides a conformal metric factor behaving as a quantum observable.Comment: 11 pages, to appear in Physics Letters

    Learning Deployable Navigation Policies at Kilometer Scale from a Single Traversal

    Full text link
    Model-free reinforcement learning has recently been shown to be effective at learning navigation policies from complex image input. However, these algorithms tend to require large amounts of interaction with the environment, which can be prohibitively costly to obtain on robots in the real world. We present an approach for efficiently learning goal-directed navigation policies on a mobile robot, from only a single coverage traversal of recorded data. The navigation agent learns an effective policy over a diverse action space in a large heterogeneous environment consisting of more than 2km of travel, through buildings and outdoor regions that collectively exhibit large variations in visual appearance, self-similarity, and connectivity. We compare pretrained visual encoders that enable precomputation of visual embeddings to achieve a throughput of tens of thousands of transitions per second at training time on a commodity desktop computer, allowing agents to learn from millions of trajectories of experience in a matter of hours. We propose multiple forms of computationally efficient stochastic augmentation to enable the learned policy to generalise beyond these precomputed embeddings, and demonstrate successful deployment of the learned policy on the real robot without fine tuning, despite environmental appearance differences at test time. The dataset and code required to reproduce these results and apply the technique to other datasets and robots is made publicly available at rl-navigation.github.io/deployable

    Home alone: autonomous extension and correction of spatial representations

    Get PDF
    In this paper we present an account of the problems faced by a mobile robot given an incomplete tour of an unknown environment, and introduce a collection of techniques which can generate successful behaviour even in the presence of such problems. Underlying our approach is the principle that an autonomous system must be motivated to act to gather new knowledge, and to validate and correct existing knowledge. This principle is embodied in Dora, a mobile robot which features the aforementioned techniques: shared representations, non-monotonic reasoning, and goal generation and management. To demonstrate how well this collection of techniques work in real-world situations we present a comprehensive analysis of the Dora system’s performance over multiple tours in an indoor environment. In this analysis Dora successfully completed 18 of 21 attempted runs, with all but 3 of these successes requiring one or more of the integrated techniques to recover from problems

    The cat's cradle network

    Get PDF
    In this paper we will argue that the representation of context in knowledge management is appropriately served by the representation of the knowledge networks in an historicised form. Characterising context as essentially extra to any particular knowledge representation, we argue that another dimension to these be modelled, rather than simply elaborating a form in its own terms. We present the formalism of the cat's cradle network, and show how it can be represented by an extension of the Pathfinder associative network that includes this temporal dimension, and allows evolutions of understandings to be traced. Grounding its semantics in communities of practice ensures utility and cohesiveness, which is lost when mere externalities of a representation are communicated in fully fledged forms. The scheme is general and subsumes other formalisms for knowledge representation. The cat's cradle network enables us to model such community-based social constructs as pattern languages, shared memory and patterns of trust and reliance, by placing their establishment in a structure that shows their essential temporality

    On Asynchronous Session Semantics

    Get PDF
    This paper studies a behavioural theory of the π-calculus with session types under the fundamental principles of the practice of distributed computing — asynchronous communication which is order-preserving inside each connection (session), augmented with asynchronous inspection of events (message arrivals). A new theory of bisimulations is introduced, distinct from either standard asynchronous or synchronous bisimilarity, accurately capturing the semantic nature of session-based asynchronously communicating processes augmented with event primitives. The bisimilarity coincides with the reduction-closed barbed congruence. We examine its properties and compare them with existing semantics. Using the behavioural theory, we verify that the program transformation of multithreaded into event-driven session based processes, using Lauer-Needham duality, is type and semantic preserving
    corecore