1,721 research outputs found

    Principles of minimal cognition:Casting cognition as sensorimotor coordination

    Get PDF
    Within the cognitive sciences, cognition tends to be interpreted from an anthropocentric perspective, involving a stringent set of human capabilities. Instead, we suggest that cognition is better explicated as a much more general biological phenomenon, allowing the lower bound of cognition to extend much further down the phylogenetic scale. We argue that elementary forms of cognition can already be witnessed in prokaryotes possessing a functional sensorimotor analogue of the nervous system. Building on a case-study of the Escherichia coli bacterium and its sensorimotor system, the TCST-system, we home in on the characteristics of minimal cognition, and distinguish it from more basic forms of ontogenetic adaptation. In our view, minimal cognition requires an embodiment consisting of a sensorimotor coupling mechanism that subsumes an autopoietic organization; this forms the basis of the growing consensus that the core of cognition revolves around sensorimotor coupling. We discuss the relevance of our interpretation of minimal cognition for the study of cognition in general

    A Comparison of Different Cognitive Paradigms Using Simple Animats in a Virtual Laboratory, with Implications to the Notion of Cognition

    Get PDF
    In this thesis I present a virtual laboratory which implements five different models for controlling animats: a rule-based system, a behaviour-based system, a concept-based system, a neural network, and a Braitenberg architecture. Through different experiments, I compare the performance of the models and conclude that there is no best model, since different models are better for different things in different contexts. The models I chose, although quite simple, represent different approaches for studying cognition. Using the results as an empirical philosophical aid, I note that there is no best approach for studying cognition, since different approaches have all advantages and disadvantages, because they study different aspects of cognition from different contexts. This has implications for current debates on proper approaches for cognition: all approaches are a bit proper, but none will be proper enough. I draw remarks on the notion of cognition abstracting from all the approaches used to study it, and propose a simple classification for different types of cognition

    The biocognitive spectrum:biological cognition as variations on sensorimotor coordination

    Get PDF

    Applying the Free-Energy Principle to Complex Adaptive Systems

    Get PDF
    The free energy principle is a mathematical theory of the behaviour of self-organising systems that originally gained prominence as a unified model of the brain. Since then, the theory has been applied to a plethora of biological phenomena, extending from single-celled and multicellular organisms through to niche construction and human culture, and even the emergence of life itself. The free energy principle tells us that perception and action operate synergistically to minimize an organism’s exposure to surprising biological states, which are more likely to lead to decay. A key corollary of this hypothesis is active inference—the idea that all behavior involves the selective sampling of sensory data so that we experience what we expect to (in order to avoid surprises). Simply put, we act upon the world to fulfill our expectations. It is now widely recognized that the implications of the free energy principle for our understanding of the human mind and behavior are far-reaching and profound. To date, however, its capacity to extend beyond our brain—to more generally explain living and other complex adaptive systems—has only just begun to be explored. The aim of this collection is to showcase the breadth of the free energy principle as a unified theory of complex adaptive systems—conscious, social, living, or not
    • …
    corecore