1,608 research outputs found

    Dual embeddings of dense near polygons

    Get PDF
    Let e: S -> Sigma be a full polarized projective embedding of a dense near polygon S, i.e., for every point p of S, the set H(p) of points at non-maximal distance from p is mapped by e into a hyperplane Pi(p) of Sigma. We show that if every line of S is incident with precisely three points or if S satisfies a certain property (P(de)) then the map p bar right arrow Pi p defines a full polarized embedding e* (the so-called dual embedding of e) of S into a subspace of the dual Sigma* of Sigma. This generalizes a result of [6] where it was shown that every embedding of a thick dual polar space has a dual embedding. We determine which known dense near polygons satisfy property (P(de)). This allows us to conclude that every full polarized embedding of a known dense near polygon has a dual embedding

    Small polygons and toric codes

    Get PDF
    We describe two different approaches to making systematic classifications of plane lattice polygons, and recover the toric codes they generate, over small fields, where these match or exceed the best known minimum distance. This includes a [36,19,12]-code over F_7 whose minimum distance 12 exceeds that of all previously known codes.Comment: 9 pages, 4 tables, 3 figure

    The smallest split Cayley hexagon has two symplectic embeddings

    Get PDF
    AbstractIt is well known that the smallest split Cayley generalized hexagon H(2) can be embedded into the symplectic space W(5,2), or equivalently, into the parabolic quadric Q(6,2). We establish a second way to embed H(2) into the same space and describe a computer proof of the fact that these are essentially the only two embeddings of this type

    Fat Polygonal Partitions with Applications to Visualization and Embeddings

    Get PDF
    Let T\mathcal{T} be a rooted and weighted tree, where the weight of any node is equal to the sum of the weights of its children. The popular Treemap algorithm visualizes such a tree as a hierarchical partition of a square into rectangles, where the area of the rectangle corresponding to any node in T\mathcal{T} is equal to the weight of that node. The aspect ratio of the rectangles in such a rectangular partition necessarily depends on the weights and can become arbitrarily high. We introduce a new hierarchical partition scheme, called a polygonal partition, which uses convex polygons rather than just rectangles. We present two methods for constructing polygonal partitions, both having guarantees on the worst-case aspect ratio of the constructed polygons; in particular, both methods guarantee a bound on the aspect ratio that is independent of the weights of the nodes. We also consider rectangular partitions with slack, where the areas of the rectangles may differ slightly from the weights of the corresponding nodes. We show that this makes it possible to obtain partitions with constant aspect ratio. This result generalizes to hyper-rectangular partitions in Rd\mathbb{R}^d. We use these partitions with slack for embedding ultrametrics into dd-dimensional Euclidean space: we give a polylog(Ī”)\mathop{\rm polylog}(\Delta)-approximation algorithm for embedding nn-point ultrametrics into Rd\mathbb{R}^d with minimum distortion, where Ī”\Delta denotes the spread of the metric, i.e., the ratio between the largest and the smallest distance between two points. The previously best-known approximation ratio for this problem was polynomial in nn. This is the first algorithm for embedding a non-trivial family of weighted-graph metrics into a space of constant dimension that achieves polylogarithmic approximation ratio.Comment: 26 page

    Groups of type FPFP via graphical small cancellation

    Full text link
    We construct an uncountable family of groups of type FPFP. In contrast to every previous construction of non-finitely presented groups of type FPFP we do not use Morse theory on cubical complexes; instead we use Gromov's graphical small cancellation theory.Comment: 3 figures. Second version: two paragraphs added emphasizing the difference between our construction and Morse theoretic one

    Fast Simulation of Skin Sliding

    Get PDF
    Skin sliding is the phenomenon of the skin moving over underlying layers of fat, muscle and bone. Due to the complex interconnections between these separate layers and their differing elasticity properties, it is difficult to model and expensive to compute. We present a novel method to simulate this phenomenon at real--time by remeshing the surface based on a parameter space resampling. In order to evaluate the surface parametrization, we borrow a technique from structural engineering known as the force density method which solves for an energy minimizing form with a sparse linear system. Our method creates a realistic approximation of skin sliding in real--time, reducing texture distortions in the region of the deformation. In addition it is flexible, simple to use, and can be incorporated into any animation pipeline
    • ā€¦
    corecore