39,871 research outputs found

    On the maximal number of real embeddings of minimally rigid graphs in R2\mathbb{R}^2, R3\mathbb{R}^3 and S2S^2

    Get PDF
    Rigidity theory studies the properties of graphs that can have rigid embeddings in a euclidean space Rd\mathbb{R}^d or on a sphere and which in addition satisfy certain edge length constraints. One of the major open problems in this field is to determine lower and upper bounds on the number of realizations with respect to a given number of vertices. This problem is closely related to the classification of rigid graphs according to their maximal number of real embeddings. In this paper, we are interested in finding edge lengths that can maximize the number of real embeddings of minimally rigid graphs in the plane, space, and on the sphere. We use algebraic formulations to provide upper bounds. To find values of the parameters that lead to graphs with a large number of real realizations, possibly attaining the (algebraic) upper bounds, we use some standard heuristics and we also develop a new method inspired by coupler curves. We apply this new method to obtain embeddings in R3\mathbb{R}^3. One of its main novelties is that it allows us to sample efficiently from a larger number of parameters by selecting only a subset of them at each iteration. Our results include a full classification of the 7-vertex graphs according to their maximal numbers of real embeddings in the cases of the embeddings in R2\mathbb{R}^2 and R3\mathbb{R}^3, while in the case of S2S^2 we achieve this classification for all 6-vertex graphs. Additionally, by increasing the number of embeddings of selected graphs, we improve the previously known asymptotic lower bound on the maximum number of realizations. The methods and the results concerning the spatial embeddings are part of the proceedings of ISSAC 2018 (Bartzos et al, 2018)

    Simplicial embeddings between multicurve graphs

    Get PDF
    We study some graphs associated to a surface, called k-multicurve graphs, which interpolate between the curve complex and the pants graph. Our main result is that, under certain conditions, simplicial embeddings between multicurve graphs are induced by π1\pi_1-injective embeddings of the corresponding surfaces. We also prove the rigidity of the multicurve graphs.Comment: New introduction and some changes in Section 2, main results unchanged. References added. 18 pages, 5 figure

    Once punctured disks, non-convex polygons, and pointihedra

    Get PDF
    We explore several families of flip-graphs, all related to polygons or punctured polygons. In particular, we consider the topological flip-graphs of once-punctured polygons which, in turn, contain all possible geometric flip-graphs of polygons with a marked point as embedded sub-graphs. Our main focus is on the geometric properties of these graphs and how they relate to one another. In particular, we show that the embeddings between them are strongly convex (or, said otherwise, totally geodesic). We also find bounds on the diameters of these graphs, sometimes using the strongly convex embeddings. Finally, we show how these graphs relate to different polytopes, namely type D associahedra and a family of secondary polytopes which we call pointihedra.Comment: 24 pages, 6 figure
    corecore