1,227 research outputs found

    Besov regularity for operator equations on patchwise smooth manifolds

    Full text link
    We study regularity properties of solutions to operator equations on patchwise smooth manifolds Ω\partial\Omega such as, e.g., boundaries of polyhedral domains ΩR3\Omega \subset \mathbb{R}^3. Using suitable biorthogonal wavelet bases Ψ\Psi, we introduce a new class of Besov-type spaces BΨ,qα(Lp(Ω))B_{\Psi,q}^\alpha(L_p(\partial \Omega)) of functions u ⁣:ΩCu\colon\partial\Omega\rightarrow\mathbb{C}. Special attention is paid on the rate of convergence for best nn-term wavelet approximation to functions in these scales since this determines the performance of adaptive numerical schemes. We show embeddings of (weighted) Sobolev spaces on Ω\partial\Omega into BΨ,τα(Lτ(Ω))B_{\Psi,\tau}^\alpha(L_\tau(\partial \Omega)), 1/τ=α/2+1/21/\tau=\alpha/2 + 1/2, which lead us to regularity assertions for the equations under consideration. Finally, we apply our results to a boundary integral equation of the second kind which arises from the double layer ansatz for Dirichlet problems for Laplace's equation in Ω\Omega.Comment: 42 pages, 3 figures, updated after peer review. Preprint: Bericht Mathematik Nr. 2013-03 des Fachbereichs Mathematik und Informatik, Universit\"at Marburg. To appear in J. Found. Comput. Mat

    Inertial manifolds and finite-dimensional reduction for dissipative PDEs

    Get PDF
    These notes are devoted to the problem of finite-dimensional reduction for parabolic PDEs. We give a detailed exposition of the classical theory of inertial manifolds as well as various attempts to generalize it based on the so-called Man\'e projection theorems. The recent counterexamples which show that the underlying dynamics may be in a sense infinite-dimensional if the spectral gap condition is violated as well as the discussion on the most important open problems are also included.Comment: This manuscript is an extended version of the lecture notes taught by the author as a part of the crash course in the Analysis of Nonlinear PDEs at Maxwell Center for Analysis and Nonlinear PDEs (Edinburgh, November, 8-9, 2012

    Tensor-Sparsity of Solutions to High-Dimensional Elliptic Partial Differential Equations

    Full text link
    A recurring theme in attempts to break the curse of dimensionality in the numerical approximations of solutions to high-dimensional partial differential equations (PDEs) is to employ some form of sparse tensor approximation. Unfortunately, there are only a few results that quantify the possible advantages of such an approach. This paper introduces a class Σn\Sigma_n of functions, which can be written as a sum of rank-one tensors using a total of at most nn parameters and then uses this notion of sparsity to prove a regularity theorem for certain high-dimensional elliptic PDEs. It is shown, among other results, that whenever the right-hand side ff of the elliptic PDE can be approximated with a certain rate O(nr)\mathcal{O}(n^{-r}) in the norm of H1{\mathrm H}^{-1} by elements of Σn\Sigma_n, then the solution uu can be approximated in H1{\mathrm H}^1 from Σn\Sigma_n to accuracy O(nr)\mathcal{O}(n^{-r'}) for any r(0,r)r'\in (0,r). Since these results require knowledge of the eigenbasis of the elliptic operator considered, we propose a second "basis-free" model of tensor sparsity and prove a regularity theorem for this second sparsity model as well. We then proceed to address the important question of the extent such regularity theorems translate into results on computational complexity. It is shown how this second model can be used to derive computational algorithms with performance that breaks the curse of dimensionality on certain model high-dimensional elliptic PDEs with tensor-sparse data.Comment: 41 pages, 1 figur
    corecore