17,063 research outputs found

    Embedding cube-connected cycles graphs into faulty hypercubes

    Get PDF
    We consider the problem of embedding a cube-connected cycles graph (CCC) into a hypercube with edge faults. Our main result is an algorithm that, given a list of faulty edges, computes an embedding of the CCC that spans all of the nodes and avoids all of the faulty edges. The algorithm has optimal running time and tolerates the maximum number of faults (in a worst-case setting). Because ascend-descend algorithms can be implemented efficiently on a CCC, this embedding enables the implementation of ascend-descend algorithms, such as bitonic sort, on hypercubes with edge faults. We also present a number of related results, including an algorithm for embedding a CCC into a hypercube with edge and node faults and an algorithm for embedding a spanning torus into a hypercube with edge faults

    Hypercube algorithms on mesh connected multicomputers

    Get PDF
    A new methodology named CALMANT (CC-cube Algorithms on Meshes and Tori) for mapping a type of algorithm that we call CC-cube algorithm onto multicomputers with hypercube, mesh, or torus interconnection topology is proposed. This methodology is suitable when the initial problem can be expressed as a set of processes that communicate through a hypercube topology (a CC-cube algorithm). There are many important algorithms that fit into the CC-cube type. CALMANT is based on three different techniques: (a) the standard embedding to assign the processes of the algorithm to the nodes of the mesh multicomputer; (b) the communication pipelining technique to increase the level of communication parallelism inherent in the CC-cube algorithms; and (c) optimal message-scheduling algorithms proposed in this work in order to avoid conflicts and minimizing in this way the communication time. Although CALMANT is proposed for multicomputers with different interconnection network topologies, the paper only focuses on the particular case of meshes.Peer ReviewedPostprint (published version

    Bounding Embeddings of VC Classes into Maximum Classes

    Full text link
    One of the earliest conjectures in computational learning theory-the Sample Compression conjecture-asserts that concept classes (equivalently set systems) admit compression schemes of size linear in their VC dimension. To-date this statement is known to be true for maximum classes---those that possess maximum cardinality for their VC dimension. The most promising approach to positively resolving the conjecture is by embedding general VC classes into maximum classes without super-linear increase to their VC dimensions, as such embeddings would extend the known compression schemes to all VC classes. We show that maximum classes can be characterised by a local-connectivity property of the graph obtained by viewing the class as a cubical complex. This geometric characterisation of maximum VC classes is applied to prove a negative embedding result which demonstrates VC-d classes that cannot be embedded in any maximum class of VC dimension lower than 2d. On the other hand, we show that every VC-d class C embeds in a VC-(d+D) maximum class where D is the deficiency of C, i.e., the difference between the cardinalities of a maximum VC-d class and of C. For VC-2 classes in binary n-cubes for 4 <= n <= 6, we give best possible results on embedding into maximum classes. For some special classes of Boolean functions, relationships with maximum classes are investigated. Finally we give a general recursive procedure for embedding VC-d classes into VC-(d+k) maximum classes for smallest k.Comment: 22 pages, 2 figure

    A streamlined proof of the convergence of the Taylor tower for embeddings in Rn\mathbb R^n

    Full text link
    Manifold calculus of functors has in recent years been successfully used in the study of the topology of various spaces of embeddings of one manifold in another. Given a space of embeddings, the theory produces a Taylor tower whose purpose is to approximate this space in a suitable sense. Central to the story are deep theorems about the convergence of this tower. We provide an exposition of the convergence results in the special case of embeddings into Rn\mathbb R^n, which has been the case of primary interest in applications. We try to use as little machinery as possible and give several improvements and restatements of existing arguments used in the proofs of the main results.Comment: Minor changes, final versio
    • …
    corecore