44 research outputs found

    The Hidden Structural Rules of the Discontinuous Lambek Calculus

    Full text link
    The sequent calculus sL for the Lambek calculus L (lambek 58) has no structural rules. Interestingly, sL is equivalent to a multimodal calculus mL, which consists of the nonassociative Lambek calculus with the structural rule of associativity. This paper proves that the sequent calculus or hypersequent calculus hD of the discontinuous Lambek calculus (Morrill and Valent\'in), which like sL has no structural rules, is also equivalent to an omega-sorted multimodal calculus mD. More concretely, we present a faithful embedding translation between mD and hD in such a way that it can be said that hD absorbs the structural rules of mD.Comment: Submitted to Lambek Festschrift volum

    A Deep Inference System for the Modal Logic S5

    Get PDF
    We present a cut-admissible system for the modal logic S5 in a formalism that makes explicit and intensive use of deep inference. Deep inference is induced by the methods applied so far in conceptually pure systems for this logic. The system enjoys systematicity and modularity, two important properties that should be satisfied by modal systems. Furthermore, it enjoys a simple and direct design: the rules are few and the modal rules are in exact correspondence to the modal axiom

    A Hypersequent Calculus with Clusters for Tense Logic over Ordinals

    Get PDF
    Prior\u27s tense logic forms the core of linear temporal logic, with both past- and future-looking modalities. We present a sound and complete proof system for tense logic over ordinals. Technically, this is a hypersequent system, enriched with an ordering, clusters, and annotations. The system is designed with proof search algorithms in mind, and yields an optimal coNP complexity for the validity problem. It entails a small model property for tense logic over ordinals: every satisfiable formula has a model of order type at most omega^2. It also allows to answer the validity problem for ordinals below or exactly equal to a given one

    Simple Decision Procedure for S5 in Standard Cut-Free Sequent Calculus

    Get PDF
    In the paper a decision procedure for S5 is presented which uses a cut-free sequent calculus with additional rules allowing a reduction to normal modal forms. It utilizes the fact that in S5 every formula is equivalent to some 1-degree formula, i.e. a modally-flat formula with modal functors having only boolean formulas in its scope. In contrast to many sequent calculi (SC) for S5 the presented system does not introduce any extra devices. Thus it is a standard version of SC but with some additional simple rewrite rules. The procedure combines the proces of saturation of sequents with reduction of their elements to some normal modal form

    A Hypersequent Calculus with Clusters for Data Logic over Ordinals

    Get PDF
    We study freeze tense logic over well-founded data streams. The logic features past-and future-navigating modalities along with freeze quantifiers, which store the datum of the current position and test data (in)equality later in the formula. We introduce a decidable fragment of that logic, and present a proof system that is sound for the whole logic, and complete for this fragment. Technically, this is a hy-persequent system enriched with an ordering, clusters, and annotations. The proof system is tailored for proof search, and yields an optimal coNP complexity for validity and a small model property for our fragment

    Bounded-analytic sequent calculi and embeddings for hypersequent logics

    Get PDF
    A sequent calculus with the subformula property has long been recognised as a highly favourable starting point for the proof theoretic investigation of a logic. However, most logics of interest cannot be presented using a sequent calculus with the subformula property. In response, many formalisms more intricate than the sequent calculus have been formulated. In this work we identify an alternative: retain the sequent calculus but generalise the subformula property to permit specific axiom substitutions and their subformulas. Our investigation leads to a classification of generalised subformula properties and is applied to infinitely many substructural, intermediate, and modal logics (specifically: those with a cut-free hypersequent calculus). We also develop a complementary perspective on the generalised subformula properties in terms of logical embeddings. This yields new complexity upper bounds for contractive-mingle substructural logics and situates isolated results on the so-called simple substitution property within a general theory

    On a multilattice analogue of a hypersequent S5 calculus

    Get PDF
    In this paper, we present a logic MMLS5n which is a combination of multilattice logic and modal logic S5. MMLS5n is an extension of Kamide and Shramko’s modal multilattice logic which is a multilattice analogue of S4. We present a cut-free hypersequent calculus for MMLS5n in the spirit of Restall’s one for S5 and develop a Kripke semantics for MMLS5n, following Kamide and Shramko’s approach. Moreover, we prove theorems for embedding MMLS5n into S5 and vice versa. As a result, we obtain completeness, cut elimination, decidability, and interpolation theorems for MMLS5n. Besides, we show the duality principle for MMLS5n. Additionally, we introduce a modification of Kamide and Shramko’s sequent calculus for their multilattice version of S4 which (in contrast to Kamide and Shramko’s original one) proves the interdefinability of necessity and possibility operators. Last, but not least, we present Hilbert-style calculi for all the logics in question as well as for a larger class of modal multilattice logics
    corecore