18 research outputs found

    Fully convolutional neural network for Malaysian road lane detection

    Get PDF
    Recently, a deep learning, Fully Convolutional Neural Network (FCN) has been widely studied because it can demonstrate promising results in the application of detection of objects in an image or video. Hence, the FCN approach has been proposed as one of the solution methods in mitigating the issues pertinent to Malaysia’s road lane detection. Previously, FCN model for lane detection has not been tested in Malaysian road conditions. Therefore, this study investigates the further performance of this model in the Malaysia. The network model is trained and validated using the datasets obtained from Machine Learning NanoDegree. In addition, the real-time data collection has been conducted to collect the data sets for the testing at the highway and urban areas in Malaysia. Then, the collected data is used to test the performance of the FCN network in detecting the lane markings on Malaysia road. The results demonstrated that the FCN method is achieving 99% of the training and validation accuracy

    Cross-Modal Message Passing for Two-stream Fusion

    Full text link
    Processing and fusing information among multi-modal is a very useful technique for achieving high performance in many computer vision problems. In order to tackle multi-modal information more effectively, we introduce a novel framework for multi-modal fusion: Cross-modal Message Passing (CMMP). Specifically, we propose a cross-modal message passing mechanism to fuse two-stream network for action recognition, which composes of an appearance modal network (RGB image) and a motion modal (optical flow image) network. The objectives of individual networks in this framework are two-fold: a standard classification objective and a competing objective. The classification object ensures that each modal network predicts the true action category while the competing objective encourages each modal network to outperform the other one. We quantitatively show that the proposed CMMP fuses the traditional two-stream network more effectively, and outperforms all existing two-stream fusion method on UCF-101 and HMDB-51 datasets.Comment: 2018 IEEE International Conference on Acoustics, Speech and Signal Processin

    SINet: A Scale-insensitive Convolutional Neural Network for Fast Vehicle Detection

    Full text link
    Vision-based vehicle detection approaches achieve incredible success in recent years with the development of deep convolutional neural network (CNN). However, existing CNN based algorithms suffer from the problem that the convolutional features are scale-sensitive in object detection task but it is common that traffic images and videos contain vehicles with a large variance of scales. In this paper, we delve into the source of scale sensitivity, and reveal two key issues: 1) existing RoI pooling destroys the structure of small scale objects, 2) the large intra-class distance for a large variance of scales exceeds the representation capability of a single network. Based on these findings, we present a scale-insensitive convolutional neural network (SINet) for fast detecting vehicles with a large variance of scales. First, we present a context-aware RoI pooling to maintain the contextual information and original structure of small scale objects. Second, we present a multi-branch decision network to minimize the intra-class distance of features. These lightweight techniques bring zero extra time complexity but prominent detection accuracy improvement. The proposed techniques can be equipped with any deep network architectures and keep them trained end-to-end. Our SINet achieves state-of-the-art performance in terms of accuracy and speed (up to 37 FPS) on the KITTI benchmark and a new highway dataset, which contains a large variance of scales and extremely small objects.Comment: Accepted by IEEE Transactions on Intelligent Transportation Systems (T-ITS

    Deep Learning for Safe Autonomous Driving: Current Challenges and Future Directions

    Full text link
    [EN] Advances in information and signal processing technologies have a significant impact on autonomous driving (AD), improving driving safety while minimizing the efforts of human drivers with the help of advanced artificial intelligence (AI) techniques. Recently, deep learning (DL) approaches have solved several real-world problems of complex nature. However, their strengths in terms of control processes for AD have not been deeply investigated and highlighted yet. This survey highlights the power of DL architectures in terms of reliability and efficient real-time performance and overviews state-of-the-art strategies for safe AD, with their major achievements and limitations. Furthermore, it covers major embodiments of DL along the AD pipeline including measurement, analysis, and execution, with a focus on road, lane, vehicle, pedestrian, drowsiness detection, collision avoidance, and traffic sign detection through sensing and vision-based DL methods. In addition, we discuss on the performance of several reviewed methods by using different evaluation metrics, with critics on their pros and cons. Finally, this survey highlights the current issues of safe DL-based AD with a prospect of recommendations for future research, rounding up a reference material for newcomers and researchers willing to join this vibrant area of Intelligent Transportation Systems.This work was supported by Institute of Information & Communications Technology Planning & Evaluation (IITP) Grant funded by the Korea Government (MSIT) (2019-0-00136, Development of AI-Convergence Technologies for Smart City Industry Productivity Innovation); The work of Javier Del Ser was supported by the Basque Government through the EMAITEK and ELKARTEK Programs, as well as by the Department of Education of this institution (Consolidated Research Group MATHMODE, IT1294-19); VHCA received support from the Brazilian National Council for Research and Development (CNPq, Grant #304315/2017-6 and #430274/2018-1).Muhammad, K.; Ullah, A.; Lloret, J.; Del Ser, J.; De Albuquerque, VHC. (2021). Deep Learning for Safe Autonomous Driving: Current Challenges and Future Directions. IEEE Transactions on Intelligent Transportation Systems. 22(7):4316-4336. https://doi.org/10.1109/TITS.2020.30322274316433622

    Learning a Dilated Residual Network for SAR Image Despeckling

    Full text link
    In this paper, to break the limit of the traditional linear models for synthetic aperture radar (SAR) image despeckling, we propose a novel deep learning approach by learning a non-linear end-to-end mapping between the noisy and clean SAR images with a dilated residual network (SAR-DRN). SAR-DRN is based on dilated convolutions, which can both enlarge the receptive field and maintain the filter size and layer depth with a lightweight structure. In addition, skip connections and residual learning strategy are added to the despeckling model to maintain the image details and reduce the vanishing gradient problem. Compared with the traditional despeckling methods, the proposed method shows superior performance over the state-of-the-art methods on both quantitative and visual assessments, especially for strong speckle noise.Comment: 18 pages, 13 figures, 7 table
    corecore