2,648 research outputs found

    Road Planning for Slums via Deep Reinforcement Learning

    Full text link
    Millions of slum dwellers suffer from poor accessibility to urban services due to inadequate road infrastructure within slums, and road planning for slums is critical to the sustainable development of cities. Existing re-blocking or heuristic methods are either time-consuming which cannot generalize to different slums, or yield sub-optimal road plans in terms of accessibility and construction costs. In this paper, we present a deep reinforcement learning based approach to automatically layout roads for slums. We propose a generic graph model to capture the topological structure of a slum, and devise a novel graph neural network to select locations for the planned roads. Through masked policy optimization, our model can generate road plans that connect places in a slum at minimal construction costs. Extensive experiments on real-world slums in different countries verify the effectiveness of our model, which can significantly improve accessibility by 14.3% against existing baseline methods. Further investigations on transferring across different tasks demonstrate that our model can master road planning skills in simple scenarios and adapt them to much more complicated ones, indicating the potential of applying our model in real-world slum upgrading. The code and data are available at https://github.com/tsinghua-fib-lab/road-planning-for-slums.Comment: KDD'2

    How machine learning informs ride-hailing services: A survey

    Get PDF
    In recent years, online ride-hailing services have emerged as an important component of urban transportation system, which not only provide significant ease for residents’ travel activities, but also shape new travel behavior and diversify urban mobility patterns. This study provides a thorough review of machine-learning-based methodologies for on-demand ride-hailing services. The importance of on-demand ride-hailing services in the spatio-temporal dynamics of urban traffic is first highlighted, with machine-learning-based macro-level ride-hailing research demonstrating its value in guiding the design, planning, operation, and control of urban intelligent transportation systems. Then, the research on travel behavior from the perspective of individual mobility patterns, including carpooling behavior and modal choice behavior, is summarized. In addition, existing studies on order matching and vehicle dispatching strategies, which are among the most important components of on-line ride-hailing systems, are collected and summarized. Finally, some of the critical challenges and opportunities in ride-hailing services are discussed

    Multi-Step Subway Passenger Flow Prediction under Large Events Using Website Data

    Get PDF
    An accurate and reliable forecasting method of the subway passenger flow provides the operators with more valuable reference to make decisions, especially in reducing energy consumption and controlling potential risks. However, due to the non-recurrence and inconsistency of large events (such as sports games, concerts or urban marathons), predicting passenger flow under large events has become a very challenging task. This paper proposes a method for extracting event-related information from websites and constructing a multi-step station-level passenger flow prediction model called DeepSPE (Deep Learning for Subway Passenger Flow Forecasting under Events). Experiments on the actual data set of the Beijing subway prove the superiority of the model and the effectiveness of website data in subway passenger flow forecasting under events
    • …
    corecore