1,685 research outputs found

    Finite Type Invariants of w-Knotted Objects II: Tangles, Foams and the Kashiwara-Vergne Problem

    Full text link
    This is the second in a series of papers dedicated to studying w-knots, and more generally, w-knotted objects (w-braids, w-tangles, etc.). These are classes of knotted objects that are wider but weaker than their "usual" counterparts. To get (say) w-knots from usual knots (or u-knots), one has to allow non-planar "virtual" knot diagrams, hence enlarging the the base set of knots. But then one imposes a new relation beyond the ordinary collection of Reidemeister moves, called the "overcrossings commute" relation, making w-knotted objects a bit weaker once again. Satoh studied several classes of w-knotted objects (under the name "weakly-virtual") and has shown them to be closely related to certain classes of knotted surfaces in R4. In this article we study finite type invariants of w-tangles and w-trivalent graphs (also referred to as w-tangled foams). Much as the spaces A of chord diagrams for ordinary knotted objects are related to metrized Lie algebras, the spaces Aw of "arrow diagrams" for w-knotted objects are related to not-necessarily-metrized Lie algebras. Many questions concerning w-knotted objects turn out to be equivalent to questions about Lie algebras. Most notably we find that a homomorphic universal finite type invariant of w-foams is essentially the same as a solution of the Kashiwara-Vergne conjecture and much of the Alekseev-Torossian work on Drinfel'd associators and Kashiwara-Vergne can be re-interpreted as a study of w-foams.Comment: 57 pages. Improvements to the exposition following a referee repor

    1-loop graphs and configuration space integral for embedding spaces

    Get PDF
    We will construct differential forms on the embedding spaces Emb(R^j,R^n) for n-j>=2 using configuration space integral associated with 1-loop graphs, and show that some linear combinations of these forms are closed in some dimensions. There are other dimensions in which we can show the closedness if we replace Emb(R^j,R^n) by fEmb(R^j,R^n), the homotopy fiber of the inclusion Emb(R^j,R^n) -> Imm(R^j,R^n). We also show that the closed forms obtained give rise to nontrivial cohomology classes, evaluating them on some cycles of Emb(R^j,R^n) and fEmb(R^j,R^n). In particular we obtain nontrivial cohomology classes (for example, in H^3(Emb(R^2,R^5))) of higher degrees than those of the first nonvanishing homotopy groups.Comment: 35 pages, to appear in Mathematical Proceedings of the Cambridge Philosophical Societ

    The loop expansion of the Kontsevich integral, the null move and S-equivalence

    Get PDF
    This is a substantially revised version. The Kontsevich integral of a knot is a graph-valued invariant which (when graded by the Vassiliev degree of graphs) is characterized by a universal property; namely it is a universal Vassiliev invariant of knots. We introduce a second grading of the Kontsevich integral, the Euler degree, and a geometric null-move on the set of knots. We explain the relation of the null-move to S-equivalence, and the relation to the Euler grading of the Kontsevich integral. The null move leads in a natural way to the introduction of trivalent graphs with beads, and to a conjecture on a rational version of the Kontsevich integral, formulated by the second author and proven in joint work of the first author and A. Kricker.Comment: AMS-LaTeX, 20 pages with 31 figure

    Combinatorics and geometry of finite and infinite squaregraphs

    Full text link
    Squaregraphs were originally defined as finite plane graphs in which all inner faces are quadrilaterals (i.e., 4-cycles) and all inner vertices (i.e., the vertices not incident with the outer face) have degrees larger than three. The planar dual of a finite squaregraph is determined by a triangle-free chord diagram of the unit disk, which could alternatively be viewed as a triangle-free line arrangement in the hyperbolic plane. This representation carries over to infinite plane graphs with finite vertex degrees in which the balls are finite squaregraphs. Algebraically, finite squaregraphs are median graphs for which the duals are finite circular split systems. Hence squaregraphs are at the crosspoint of two dualities, an algebraic and a geometric one, and thus lend themselves to several combinatorial interpretations and structural characterizations. With these and the 5-colorability theorem for circle graphs at hand, we prove that every squaregraph can be isometrically embedded into the Cartesian product of five trees. This embedding result can also be extended to the infinite case without reference to an embedding in the plane and without any cardinality restriction when formulated for median graphs free of cubes and further finite obstructions. Further, we exhibit a class of squaregraphs that can be embedded into the product of three trees and we characterize those squaregraphs that are embeddable into the product of just two trees. Finally, finite squaregraphs enjoy a number of algorithmic features that do not extend to arbitrary median graphs. For instance, we show that median-generating sets of finite squaregraphs can be computed in polynomial time, whereas, not unexpectedly, the corresponding problem for median graphs turns out to be NP-hard.Comment: 46 pages, 14 figure
    corecore