835 research outputs found

    Review of trends and targets of complex systems for power system optimization

    Get PDF
    Optimization systems (OSs) allow operators of electrical power systems (PS) to optimally operate PSs and to also create optimal PS development plans. The inclusion of OSs in the PS is a big trend nowadays, and the demand for PS optimization tools and PS-OSs experts is growing. The aim of this review is to define the current dynamics and trends in PS optimization research and to present several papers that clearly and comprehensively describe PS OSs with characteristics corresponding to the identified current main trends in this research area. The current dynamics and trends of the research area were defined on the basis of the results of an analysis of the database of 255 PS-OS-presenting papers published from December 2015 to July 2019. Eleven main characteristics of the current PS OSs were identified. The results of the statistical analyses give four characteristics of PS OSs which are currently the most frequently presented in research papers: OSs for minimizing the price of electricity/OSs reducing PS operation costs, OSs for optimizing the operation of renewable energy sources, OSs for regulating the power consumption during the optimization process, and OSs for regulating the energy storage systems operation during the optimization process. Finally, individual identified characteristics of the current PS OSs are briefly described. In the analysis, all PS OSs presented in the observed time period were analyzed regardless of the part of the PS for which the operation was optimized by the PS OS, the voltage level of the optimized PS part, or the optimization goal of the PS OS.Web of Science135art. no. 107

    Practical applications of multi-agent systems in electric power systems

    Get PDF
    The transformation of energy networks from passive to active systems requires the embedding of intelligence within the network. One suitable approach to integrating distributed intelligent systems is multi-agent systems technology, where components of functionality run as autonomous agents capable of interaction through messaging. This provides loose coupling between components that can benefit the complex systems envisioned for the smart grid. This paper reviews the key milestones of demonstrated agent systems in the power industry and considers which aspects of agent design must still be addressed for widespread application of agent technology to occur

    A Software Defined Networking Architecture for DDoS-Attack in the storage of Multi-Microgrids

    Get PDF
    Multi-microgrid systems can improve the resiliency and reliability of the power system network. Secure communication for multi-microgrid operation is a crucial issue that needs to be investigated. This paper proposes a multi-controller software defined networking (SDN) architecture based on fog servers in multi-microgrids to improve the electricity grid security, monitoring and controlling. The proposed architecture defines the support vector machine (SVM) to detect the distributed denial of service (DDoS) attack in the storage of microgrids. The information of local SDN controllers on fog servers is managed and supervised by the master controller placed in the application plane properly. Based on the results of attack detection, the power scheduling problem is solved and send a command to change the status of tie and sectionalize switches. The optimization application on the cloud server implements the modified imperialist competitive algorithm (MICA) to solve this stochastic mixed-integer nonlinear problem. The effective performance of the proposed approach using an SDN-based architecture is evaluated through applying it on a multi-microgrid based on IEEE 33-bus radial distribution system with three microgrids in simulation results

    Integrating reliability and resilience to support microgrid design

    Full text link
    Quantifying the potential benefits of microgrids in the design phase can support the transition of passive distribution networks into microgrids. At current, reliability and resilience are the main drivers for this transition. Therefore, this paper presents a mathematical optimization model to support the retrofitting of distribution networks into microgrids integrating techno-economic, resilience and reliability objectives. Storage and distributed generation are optionally installed to complement renewable generation, enabling the microgrid to supply priority demands during stochastic islanding events with uncertain duration. For a comprehensive quantification and optimization of microgrid resilience and reliability, islanding due to external events is combined with a detailed model of internal faults. Minimizing the interruption costs yields optimal capacities and placements of distributed energy resources and new lines for reconfiguration. The proposed method produces microgrid designs with up to 95% reliability and resilience gain and moderate cost increase in two benchmark distribution networks using data from the US Department of Energy. The developed methodology is scalable to large networks owing to the tailored Column-and-Constraint-Generation approach

    Interactive Multi-level planning for energy management in clustered microgrids considering flexible demands

    Get PDF
    This paper presents a novel interactive multi-level planning strategy for the energy management of distribution networks with clustered microgrids (CMGs). CMGs are a group of microgrids with multiple renewable energy resources that comprise various technologies, such as photovoltaic systems, wind turbines, micro turbines and electric vehicles. This study develops an innovative multi-level optimization framework for the energy management coordination between microgrids and CMGs in the lower level, between clusters and distribution systems, and finally between distribution systems and upstream networks in the upper level. Accordingly, an hourly optimal energy management (HOEM) system is applied to minimize the multi-objective objective function for each level. The lower level may be operated in islanded or grid-connected mode in some hours. This is decided by changing switches between MGs, clusters, and grids, while the upper level is only operated in the grid-connected mode. Moreover, a demand response program that has a great effect on the hourly planning of switches is modeled in the upper level. The proposed model is tested on CMGs and actual distribution systems. The results show the significance of this planning strategy in the techno-economic aspects and optimal power transaction in the distribution system operation.© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    A comprehensive model for the design of a microgrid under regulatory constraints using synthetical data generation and stochastic optimization

    Get PDF
    As renewable energy installation costs decrease and environmentally-friendly policies are progressively applied in many countries, distributed generation has emerged as the new archetype of energy generation and distribution. The design and economic feasibility of distributed generation systems is constrained by the operation of the microgrid, which has to consider the uncertainty of renewable energy sources, consumption habits and electricity market prices. In this paper, a mathematical model intended to optimize the design and economic feasibility of a microgrid is proposed. After a search in the state-of-the-art, weaknesses and strengths of existing models have been identified and taken into account for building the present model. The present model should be seen as a basis on which other models can be built upon, hence a complete definition of the different sub-models is stated: uncertainty modelling, optimization technique, physical constraints and regulatory framework. One of the main features presented is the generation of synthetic data in uncertainty modelling, employed to enhance the reliability of the model by taking into account a longer time horizon and a shorter time step. Results show significant details about energy management and prove the suitability of using a stochastic approach rather than deterministic or intuitive ones to perform the optimization.Peer ReviewedPostprint (published version

    Protection and Control of Active Distribution Networks and Microgrids

    Get PDF
    This thesis is mainly focused on (i) modeling and control of Electronically Coupled Distributed Energy Resources (EC-DERs) under severe network imbalances and transient incidents, and (ii) protection of active distribution networks and microgrids against different types of faults. In the first part, an enhanced control strategy is proposed to improve the performance of EC-DERs under faults and transient disturbances, in a multi-unit microgrid setting. With the use of proposed control strategy, the host microgrid can ride through network faults, irrespective of whether they take place within the microgrid jurisdiction or impact the upstream grid, and quickly reclaim its pre-fault operating conditions to improve post-fault recovery. Further, the proposed control scheme enables the host microgrid to retain its power quality for the duration of the faults, in both modes of operation, which is a desirable property for detection of certain classes of faults, as well as for sensitive loads. In the second part of the thesis, appropriate strategies are proposed for protection of low- and medium-voltage microgrids in the islanded mode as well as the grid-connected mode of operation. The proposed protection strategies aim to detect and isolate the faults that impact the microgrid, in a selective manner. The proposed strategies can be implemented through programmable microprocessor-based relays which are commercially available; hence, the structure of new relays that enable the proposed protection strategies are also discussed in the thesis. In addition, the thesis investigates the operation of an existing distribution network as a microgrid. Thus, practical control and protection strategies that enable off-grid operation of the distribution network (considering the system constraints) are discussed. The effectiveness of the proposed control and protection strategies are demonstrated through time-domain simulation studies conducted in the PSCAD/EMTDC software environment
    corecore