134 research outputs found

    Embedding Stacked Polytopes on a Polynomial-Size Grid

    Full text link
    A stacking operation adds a dd-simplex on top of a facet of a simplicial dd-polytope while maintaining the convexity of the polytope. A stacked dd-polytope is a polytope that is obtained from a dd-simplex and a series of stacking operations. We show that for a fixed dd every stacked dd-polytope with nn vertices can be realized with nonnegative integer coordinates. The coordinates are bounded by O(n2log(2d))O(n^{2\log(2d)}), except for one axis, where the coordinates are bounded by O(n3log(2d))O(n^{3\log(2d)}). The described realization can be computed with an easy algorithm. The realization of the polytopes is obtained with a lifting technique which produces an embedding on a large grid. We establish a rounding scheme that places the vertices on a sparser grid, while maintaining the convexity of the embedding.Comment: 22 pages, 10 Figure

    Embedding Stacked Polytopes on a Polynomial-Size Grid

    Get PDF
    We show how to realize a stacked 3D polytope (formed by repeatedly stacking a tetrahedron onto a triangular face) by a strictly convex embedding with its n vertices on an integer grid of size O(n4) x O(n4) x O(n18). We use a perturbation technique to construct an integral 2D embedding that lifts to a small 3D polytope, all in linear time. This result solves a question posed by G unter M. Ziegler, and is the rst nontrivial subexponential upper bound on the long-standing open question of the grid size necessary to embed arbitrary convex polyhedra, that is, about effcient versions of Steinitz's 1916 theorem. An immediate consequence of our result is that O(log n)-bit coordinates suffice for a greedy routing strategy in planar 3-trees.Deutsche Forschungsgemeinschaft (DFG) (Grant No. SCHU 2458/1-1

    A Quantitative Steinitz Theorem for Plane Triangulations

    Full text link
    We give a new proof of Steinitz's classical theorem in the case of plane triangulations, which allows us to obtain a new general bound on the grid size of the simplicial polytope realizing a given triangulation, subexponential in a number of special cases. Formally, we prove that every plane triangulation GG with nn vertices can be embedded in R2\mathbb{R}^2 in such a way that it is the vertical projection of a convex polyhedral surface. We show that the vertices of this surface may be placed in a 4n3×8n5×ζ(n)4n^3 \times 8n^5 \times \zeta(n) integer grid, where ζ(n)(500n8)τ(G)\zeta(n) \leq (500 n^8)^{\tau(G)} and τ(G)\tau(G) denotes the shedding diameter of GG, a quantity defined in the paper.Comment: 25 pages, 6 postscript figure

    Small grid embeddings of 3-polytopes

    Full text link
    We introduce an algorithm that embeds a given 3-connected planar graph as a convex 3-polytope with integer coordinates. The size of the coordinates is bounded by O(27.55n)=O(188n)O(2^{7.55n})=O(188^{n}). If the graph contains a triangle we can bound the integer coordinates by O(24.82n)O(2^{4.82n}). If the graph contains a quadrilateral we can bound the integer coordinates by O(25.46n)O(2^{5.46n}). The crucial part of the algorithm is to find a convex plane embedding whose edges can be weighted such that the sum of the weighted edges, seen as vectors, cancel at every point. It is well known that this can be guaranteed for the interior vertices by applying a technique of Tutte. We show how to extend Tutte's ideas to construct a plane embedding where the weighted vector sums cancel also on the vertices of the boundary face

    A duality transform for realizing convex polytopes with small integer coordinates

    Full text link
    Wir entwickeln eine Dualitätstransformation für Polyeder, die eine Einbettung auf dem polynomiellen Gitter berechnet, wenn das ursprüngliche Polyeder auf einem polynomiellen Gitter gegeben ist. Die Konstruktion erfordert einen beschränkten Knotengrad des Polytop-Graphen, funktioniert aber im allgemeinen Fall für die Klasse der Stapelpolytope. Als Konsequenz können wir zeigen, dass sich die "Truncated Polytopes" auf einem polynomiellen Gitter realisieren lassen. Dieses Ergebnis gilt für jede (feste) Dimension.We study realizations of convex polytopes with small integer coordinates. We develop an efficient duality transform, that allows us to go from an efficient realization of a convex polytope to an efficient realization of its dual.Our methods prove to be especially efficient for realizing the class of polytopes dual to stacked polytopes, known as truncated polytopes. We show that every 3d truncated polytope with n vertices can be realized on an integer grid of size O(n^(9lg(6)+1)), and in R^d the required grid size is n^(O(d^2*lg(d))). The class of truncated polytopes is only the second nontrivial class of polytopes, the first being the class of stacked polytopes, for which realizations on a polynomial size integer grid are known to exists

    Strongly Monotone Drawings of Planar Graphs

    Get PDF
    A straight-line drawing of a graph is a monotone drawing if for each pair of vertices there is a path which is monotonically increasing in some direction, and it is called a strongly monotone drawing if the direction of monotonicity is given by the direction of the line segment connecting the two vertices. We present algorithms to compute crossing-free strongly monotone drawings for some classes of planar graphs; namely, 3-connected planar graphs, outerplanar graphs, and 2-trees. The drawings of 3-connected planar graphs are based on primal-dual circle packings. Our drawings of outerplanar graphs are based on a new algorithm that constructs strongly monotone drawings of trees which are also convex. For irreducible trees, these drawings are strictly convex

    Adjacency Graphs of Polyhedral Surfaces

    Get PDF
    We study whether a given graph can be realized as an adjacency graph of the polygonal cells of a polyhedral surface in R3\mathbb{R}^3. We show that every graph is realizable as a polyhedral surface with arbitrary polygonal cells, and that this is not true if we require the cells to be convex. In particular, if the given graph contains K5K_5, K5,81K_{5,81}, or any nonplanar 33-tree as a subgraph, no such realization exists. On the other hand, all planar graphs, K4,4K_{4,4}, and K3,5K_{3,5} can be realized with convex cells. The same holds for any subdivision of any graph where each edge is subdivided at least once, and, by a result from McMullen et al. (1983), for any hypercube. Our results have implications on the maximum density of graphs describing polyhedral surfaces with convex cells: The realizability of hypercubes shows that the maximum number of edges over all realizable nn-vertex graphs is in Ω(nlogn)\Omega(n \log n). From the non-realizability of K5,81K_{5,81}, we obtain that any realizable nn-vertex graph has O(n9/5)O(n^{9/5}) edges. As such, these graphs can be considerably denser than planar graphs, but not arbitrarily dense.Comment: To appear in Proc. SoCG 202
    corecore